
3 The M/M/1 system

The basic queueing model is the so-called M/M/1 queueing model. In this model customers
arrive according to a Poisson process and the service times of the customers are independent
and identically exponentially distributed. The arrival rate is denoted by λ. The service
rate is denoted by µ, so the mean service time is 1/µ. The customers are served by a single
server in order of arrival (FCFS). We require that

ρ =
λ

µ
< 1,

since, otherwise, the queue length will explode (see section 2.2). The quantity ρ is the
fraction of time the server is servicing customers. Although in reality a queueing system is
never as mathematically simple as this, the model contains most of its essential characteris-
tics. The analysis of this system will clearly show the sometimes devastating consequences
of randomness both in the arrival process and in the service times.

3.1 The equilibrium distribution

In order to understand the behaviour of such a queueing system, it will be analysed as a
stochastic process. Our main interest concerns the distribution of the number of customers
in the system at an arbitrary point in time. From this distribution we will see how the
number of customers in the system fluctuates and we will be able to compute important
performance characteristics such as the mean number of customers in the system and the
fraction of customers that will have a sojourn time (waiting time plus processing time) less
than, for instance, a week.

The assumptions we made about the system (i.e., Poisson arrivals, exponential service
times and FCFS servicing) make it possible to describe the state of the system at an
arbitrary point in time by simply the number of customers in the system. Without these
assumptions, the state description would be very complicated and would have to contain
not only the number of customers in the system, but also, for example, the residual service
time of the customer in service. The reason for this simplification is that, in the case of
exponential interarrival times and exponential service times, the distribution of the time
until the next arrival or service completion is not affected by the time that elapsed since
the last arrival and the last service completion. This is due to the memoryless property
of the exponential distribution (see section 1.2.3) Further, the FCFS order of servicing
means that the past gives no information about the customers waiting in the queue. Note
that if, for instance, the service order would be Shortest Processing Time First, then the
customers waiting in the queue will on average be longer than an arbitrary customer.

Let us first have a look at a formal derivation of the equilibrium or limiting distribution,
via the time-dependent behaviour. Let pk(t) denote the probability that at time t there
are k customers in the system. Then the evolution of the process in time can be described
by the following set of equations:

p0(t + h) = p0(t)(1− λh) + p1(t)µh + o(h),
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pk(t + h) = pk−1(t)λh + pk(t)(1− λh− µh) + pk+1(t)µh + o(h), k ≥ 1.

Here, o(h) is a shorthand notation for a function, g(h) say, for which g(h)/h tends to zero
when h tends to zero. Letting h tend to 0 we get the set of differential equations

p′0(t) = −λp0(t) + µp1(t),

p′k(t) = λpk−1(t)− (λ + µ)pk(t) + µpk+1(t), q k ≥ 1,

One may formally prove that if t tends to infinity, p′k(t) tends to 0 and pk(t) converges to
pk. From this we conclude that the limiting probabilities pk satisfy the equations

0 = −λp0 + µp1, (1)

0 = λpk−1 − (λ + µ)pk + µpk+1, k = 1, 2 . . . , (2)

Clearly, the probabilities pk also satisfy

∞∑
k=0

pk = 1, (3)

which is called the normalization equation.
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Figure 1: Flow diagram for the M/M/1 model

It is also possible to derive the equations (1) and (2) directly from a flow diagram as
shown in figure 1. The arrows indicate possible transitions. The rate at which a transition
occurs is λ for a transition from k to k + 1 (an arrival) and µ for a transition from k + 1
to k (a departure). The number of transitions per unit time from k to k + 1, which is also
called the flow from k to k + 1, is equal to pk, the fraction of time the system is in state k,
times λ, the rate at which arrivals occur while the system is in state k. The equilibrium
equations (1) and (2) follow by equating the flow out of state k and the flow into state k.

Remark 3.1 The use of flow diagrams is quite intuitive, but also quite risky. It is abso-
lutely necessary that the states give a complete description of the state of the production
process. As we discussed above, the number of customers in the system is usually not
the full state description. If e.g., the service times are not exponential, then the state
description has to contain the remaining processing time, and thus a simple flow diagram
is not available.

A further simplification of the equations can be obtained by using the typical transition
structure in the system. State changes are always from k to k + 1 or from k to k − 1.
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Equating the mean number of transitions out of the set {0, 1, ..., k} to the mean number
of transitions into that set, we get

pkλ = pk+1µ, k ≥ 0.

Using the notation ρ = λ/µ for the fraction of time the machine is producing, we can
rewrite this equation as

pk+1 = ρpk, k ≥ 0.

From this, we obtain pk = ρkp0 and, by setting the sum of the probabilities equal to 1,

pk = (1− ρ)ρk, k ≥ 0.

From now on, we will call this the equilibrium distribution of the system.

3.2 Performance characteristics

From the equilibrium distribution we can compute the most important performance mea-
sures, such as the mean number of customers in the system, denoted by E(L), and the
mean sojourn time or system time, denoted by E(S). The first one is easily obtained as

E(L) =
∞∑

k=0

kpk =
∞∑

k=0

k(1− ρ)ρk =
ρ

1− ρ
.

As we see, if ρ, the load of the system or utilization, approaches 1 the mean number of
customers in the system goes to infinity. For example, if the load is 0.95 and the mean
customer size is 4 hours then the mean amount of work in the system is equal to 76 hours!
This dramatic behaviour is caused by the variation in the arrival and service process and
it is characteristic for almost every queueing system. Equally, or even more important, is
the mean sojourn time. From Little’s formula we get

E(S) = E(L)/λ =
ρ

1− ρ

1

λ
=

1

1− ρ

1

µ
.

So, we see that the behaviour of E(S) is similar to the behaviour of E(L), when ρ ap-
proaches 1. For ρ = 0.95, the mean sojourn time is 20 times as big as the mean processing
time.

3.3 The Mean Value Approach

There is another way to directly compute the mean number of customers in the system E(L)
and the mean sojourn time E(S), without knowing the probabilities pk. This approach
uses three important properties. The first one is Little’s formula, the second one is the
PASTA property and the third one is the fact that if a customer has an exponentially
distributed service time, then the residual service time of the customer in service on an
arrival instant is again exponential.
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Based on the PASTA property we know that the mean number of customers in the
system seen at an arrival instant of a customer equals E(L). Furthermore, by the third
property, each of them (also the one in service) has a (residual) service time with mean
1/µ. Finally, the sojourn time of a customer also includes its own service time. Hence,

E(S) = E(L)
1

µ
+

1

µ
.

This relation is known as the arrival relation. Together with Little’s formula,

E(L) = λE(S),

we have two equations from which we get

E(S) = λE(S)
1

µ
+

1

µ
= ρE(S) +

1

µ
.

Thus,

E(S) =
1

1− ρ

1

µ
,

and
E(L) =

ρ

1− ρ
.

3.4 The distribution of the sojourn time

The mean value approach is, although a very powerful tool, not able to lead us to the
distribution of the sojourn time. We can, however, compute this distribution from the
equilibrium distribution. To do so, note that if an arriving customer finds k customers in
the system, then the sojourn time of this customer consists of k+1 independent exponential
service times (one of which may be a residual service time). Recall that the sum of k + 1
independent and identically distributed service times is Erlang distributed with parameters
k + 1 and µ, so with density

fk+1(t) = µ
(µt)k

k!
e−µt.

By PASTA, the probability that an arriving customer finds k customers in the system is
equal to pk. So, we get for the overall density

fS(t) =
∞∑

k=0

pkfk+1(t) =
∞∑

k=0

(1− ρ)ρkµ
(µt)k

k!
e−µt = µ(1− ρ)e−µ(1−ρ)t.

Hence, the sojourn time is also exponentially distributed, but with parameter µ(1−ρ). For
this queueing system, the probability that the actual sojourn time of a customer is larger
than a times the mean sojourn time is given by

P [S > aE(S)] = e−a.

Hence, sojourn times of 2, 3 and even 4 times the mean sojourn time are not uncommon.
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3.5 Arrival and departure distribution

Let ak denote the probability that an arriving customer finds k customers in the system
and dk the probability that a departing customer leavse behind k customers, k ≥ 0. The
probabilities ak are called the arrival distribution, the dk are the departure distribution.
By PASTA we know that ak is equal to the equilibrium probability pk, so

ak = pk = (1− ρ)ρk, k = 0, 1, 2, . . .

To determine dk we observe the following. Let Dk(t) be the number of departures in (0, t)
leaving behind k customers and Ak(t) the number of arrivals in (0, t) finding k customers
in the system. Since customers arrive and leave one by one (i.e., we have no batch arrivals
or batch departures) it holds for any t ≥ 0,

Dk(t) = Ak(t)± 1.

Hence,
λdk = lim

t→∞
Dk(t)/t = lim

t→∞
Ak(t)/t = λak,

so the arrival and departure distribution are the same.

3.6 The output process

We now look at the output this production system. The output rate of the machine is
of course the same as the input rate, so λ. To find the distribution of the time between
two departures, let us consider an arbitrary departing customer. The probability that this
customer leaves behind an empty system is equal to d0 = 1−ρ. Then the time till the next
departure is the sum of an exponential interarrival time with mean 1/λ and an exponential
service time with mean 1/µ. If the system is nonempty upon departure, the time till the
next departure is only a service time. Hence, the density of the time till the next departure
is

fD(t) = (1− ρ)
λµ

λ− µ

(
e−µt − e−λt

)
+ ρµe−µt = λe−λt,

from which we see that the interdeparture time is exponentially distributed with mean
1/λ. In fact it can also be shown that the interdeparture times are independent (see, e.g.,
[1, 2]). So the output of the M/M/1 system is again a Poisson process.
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