
4 M/G/1 queue

In the M/G/1 queue customers arrive according to a Poisson process with rate λ and
they are treated in order of arrival. The service times are independent and identically
distributed with distribution function FB(·) and density fB(·). For stability we have to
require that the occupation rate

ρ = λE(B) (1)

is less than one. In this chapter we will derive the limiting or equilibrium distribution of
the number of customers in the system and the distributions of the sojourn time and the
waiting time. It is further shown how the means of these quantities can be obtained by
using the mean value approach.

4.1 Which limiting distribution?

The state of the M/G/1 queue can be described by the pair (n, x) where n denotes the
number of customers in the system and x the service time already received by the customer
in service. We thus need a two-dimensional state description. The first dimension is still
discrete, but the other one is continuous and this essentially complicates the analysis.
However, if we look at the system just after departures, then the state description can be
simplified to n only, because x = 0 for the new customer (if any) in service. Denote by Ld

k

the number of customers left behind by the kth departing customer. In the next section
we will determine the limiting distribution

dn = lim
k→∞

P (Ld
k = n).

The probability dn can be interpreted as the fraction of customers that leaves behind n
customers. But in fact we are more interested in the limiting distribution pn defined as

pn = lim
t→∞

P (L(t) = n),

where L(t) is the number of customers in the system at time t. The probability pn can
be interpreted as the fraction of time there are n customers in the system. From this
distribution we can compute, e.g., the mean number of customers in the system. Another
perhaps even more important distribution is the limiting distribution of the number of
customers in the system seen by an arriving customer, i.e.,

an = lim
k→∞

P (La
k = n),

where La
k is the number of customers in the system just before the kth arriving customer.

From this distribution we can compute, e.g., the distribution of the sojourn time. What is
the relation between these three distributions? It appears that they all are the same.

Of course, from the PASTA property we already know that an = pn for all n. We will
now explain why also an = dn for all n. Taking the state of the system as the number of
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customers therein, the changes in state are of a nearest-neighbour type: if the system is in
state n, then an arrival leads to a transition from n to n + 1 and a departure from n to
n− 1. Hence, in equilibrium, the number of transitions per unit time from state n to n+1
will be the same as the number of transitions per unit time from n + 1 to n. The former
transitions correspond to arrivals finding n customers in the system, the frequency of which
is equal to the total number of arrivals per unit time, λ, multiplied with the fraction of
customers finding n customers in the system, an. The latter transitions correspond to
departures leaving behind n customers. The frequency of these transitions is equal to the
total number of departures per unit time, λ, multiplied with the fraction of customers
leaving behind n customers, dn. Equating both frequencies yields an = dn. Note that this
equality is valid for any system where customers arrive and leave one by one. Thus it also
holds for, e.g., the G/G/c queue.

Summarizing, for the M/G/1 queue, arrivals, departures and outside observers all see
the same distribution of number of customers in the system, i.e., for all n,

an = dn = pn.

4.2 Departure distribution

In this section we will determine the distribution of the number of customers left behind
by a departing customer when the system is in equilibrium.

Denote by Ld
k the number of customers left behind by the kth departing customer. We

first derive an equation relating the random variable Ld
k+1 to Ld

k. The number of customers
left behind by the k + 1th customer is clearly equal to the number of customers present
when the kth customer departed minus one (since the k + 1th customer departs himself)
plus the number of customers that arrives during his service time. This last number is
denoted by the random variable Ak+1. Thus we have

Ld
k+1 = Ld

k − 1 + Ak+1,

which is valid if Ld
k > 0. In the special case Ld

k = 0, it is readily seen that

Ld
k+1 = Ak+1.

From the two equations above it is immediately clear that the sequence {Ld
k}∞k=0 forms a

Markov chain. This Markov chain is usually called the imbedded Markov chain, since we
look at imbedded points on the time axis, i.e., at departure instants.

We now specify the transition probabilities

pi,j = P (Ld
k+1 = j|Ld

k = i).

Clearly pi,j = 0 for all j < i − 1 and pi,j for j ≥ i − 1 gives the probability that exactly
j − i + 1 customers arrived during the service time of the k + 1th customer. This holds
for i > 0. In state 0 the kth customer leaves behind an empty system and then p0,j gives
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the probability that during the service time of the k + 1th customer exactly j customers
arrived. Hence the matrix P of transition probabilities takes the form

P =



α0 α1 α2 α3 · · ·
α0 α1 α2 α3 · · ·
0 α0 α1 α2 · · ·
0 0 α0 α1 · · ·
0 0 0 α0 · · ·
...

...
...

...
. . .


,

where αn denotes the probability that during a service time exactly n customers arrive.
To calculate αn we note that given the duration of the service time, t say, the number of
customers that arrive during this service time is Poisson distributed with parameter λt.
Hence, we have

αn =
∫ ∞

t=0

(λt)n

n!
e−λtfB(t)dt. (2)

The transition probability diagram is shown in figure 1.
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Figure 1: Transition probability diagram for the M/G/1 imbedded Markov chain

This completes the specification of the imbedded Markov chain. We now wish to
determine its limiting distribution. Denote the limiting distribution of Ld

k by {dn}∞n=0 and
the limiting random variable by Ld. So

dn = P (Ld = n) = lim
k→∞

P (Ld
k = n).

The limiting probabilities dn, which we know are equal to pn, satisfy the equilibrium
equations

dn = dn+1α0 + dnα1 + · · · + d1αn + d0αn

=
n∑

k=0

dn+1−kαk + d0αn, n = 0, 1, . . . (3)
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To solve the equilibrium equations we will use the generating function approach. Let us
introduce the probability generating functions

PLd(z) =
∞∑

n=0

dnz
n, PA(z) =

∞∑
n=0

αnz
n,

which are defined for all z ≤ 1. Multiplying (3) by zn and summing over all n leads to

PLd(z) =
∞∑

n=0

(
n∑

k=0

dn+1−kαk + d0αn

)
zn

= z−1
∞∑

n=0

n∑
k=0

dn+1−kz
n+1−kαkz

k +
∞∑

n=0

d0αnz
n

= z−1
∞∑

k=0

∞∑
n=k

dn+1−kz
n+1−kαkz

k + d0PA(z)

= z−1
∞∑

k=0

αkz
k
∞∑

n=k

dn+1−kz
n+1−k + d0PA(z)

= z−1PA(z)(PLd(z) − d0) + d0PA(z).

Hence we find

PLd(z) =
d0PA(z)(1 − z−1)

1 − z−1PA(z)
.

To determine the probability d0 we note that d0 is equal to p0, which is the fraction of time
the system is empty. Hence d0 = p0 = 1−ρ ( alternatively, d0 follows from the requirement
PLd(1) = 1). So, by multiplying numerator and denominator by −z we obtain

PLd(z) =
(1 − ρ)PA(z)(1 − z)

PA(z) − z
. (4)

By using (2), the generating function PA(z) can be rewritten as

PA(z) =
∞∑

n=0

∫ ∞
t=0

(λt)n

n!
e−λtfB(t)dtzn

=
∫ ∞

t=0

∞∑
n=0

(λtz)n

n!
e−λtfB(t)dt

=
∫ ∞

t=0

∞∑
n=0

e−(λ−λz)tfB(t)dt

= B̃(λ − λz) (5)

Substitution of (5) into (4) finally yields

PLd(z) =
(1 − ρ)B̃(λ − λz)(1 − z)

B̃(λ − λz) − z
. (6)
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This formula is one form of the Pollaczek-Khinchin formula. In the following sections
we will derive similar formulas for the sojourn time and waiting time. By differentiating
formula (6) we can determine the moments of the queue length. To find its distribution,
however, we have to invert formula (6), which usually is very difficult. In the special case
that B̃(s) is a quotient of polynomials in s, i.e., a rational function, then in principle
the right-hand side of (6) can be decomposed into partial fractions, the inverse transform
of which can be easily determined. The service time has a rational transform for, e.g.,
mixtures of Erlang distributions or Hyperexponential distributions. The inversion of (6) is
demonstrated below for exponential and Erlang-2 service times.

Example 4.1 (M/M/1)
Suppose the service time is exponentially distributed with mean 1/µ. Then

B̃(s) =
µ

µ + s
.

Thus

PLd(z) =
(1 − ρ) µ

µ+λ−λz
(1 − z)

µ
µ+λ−λz

− z
=

(1 − ρ)µ(1 − z)

µ − z(µ + λ − λz)
=

(1 − ρ)µ(1 − z)

(µ − λz)(1 − z)
=

1 − ρ

1 − ρz
.

Hence
dn = pn = (1 − ρ)ρn, n = 0, 1, 2, . . .

Example 4.2 (M/E2/1)
Suppose the service time is Erlang-2 distributed with mean 2/µ. Then

B̃(s) =

(
µ

µ + s

)2

,

so

PLd(z) =
(1 − ρ)

(
µ

µ+λ−λz

)2
(1 − z)(

µ
µ+λ−λz

)2
− z

=
(1 − ρ)µ2(1 − z)

µ2 − z(µ + λ − λz)2

=
(1 − ρ)(1 − z)

1 − z(1 + ρ(1 − z)/2)2

=
1 − ρ

1 − ρz − ρ2z(1 − z)/4
.

For ρ = 1/3 we then find

PLd(z) =
2/3

1 − z/3 − z(1 − z)/36
=

24

36 − 13z + z2

=
24

(4 − z)(9 − z)
=

24/5

4 − z
− 24/5

9 − z
=

6/5

1 − z/4
− 8/15

1 − z/9
.
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Hence,

dn = pn =
6

5

(
1

4

)n

− 8

15

(
1

9

)n

, n = 0, 1, 2, . . .

Example 4.3 (M/H2/1)
Suppose that λ = 1 and that the service time is hyperexponentially distributed with
parameters p1 = 1 − p2 = 1/4 and µ1 = 1, µ2 = 2. So the mean service time is equal to
1/4 · 1 + 3/4 · 1/2 = 5/8. The Laplace-Stieltjes transform of the service time is given by

B̃(s) =
1

4
· 1

1 + s
+

3

4
· 2

2 + s
=

1

4
· 8 + 7s

(1 + s)(2 + s)
.

Thus we have

PLd(z) =

3
8

1
4

15−7z
(2−z)(3−z)

(1 − z)
1
4

15−7z
(2−z)(3−z)

− z

=
3

8
· (15 − 7z)(1 − z)

(15 − 7z) − 4z(2 − z)(3 − z)

=
3

8
· 15 − 7z

(3 − 2z)(5 − 2z)

=
3

8
· 9/4

3 − 2z
+

3

8
· 5/4

5 − 2z/5

=
9/32

1 − 2z/3
+

3/32

1 − 2z/5
.

So

dn = pn =
9

32

(
2

3

)n

+
3

32

(
2

5

)n

, n = 0, 1, 2, . . .

4.3 Distribution of the sojourn time

We now turn to the calculation of how long a customer spends in the system. We will show
that there is a nice relationship between the transforms of the time spent in the system
and the departure distribution.

Let us consider a customer arriving at the system in equilibrium. Denote the total
time spent in the system for this customer by the random variable S with distribution
function FS(·) and density fS(·). The distribution of the number of customers left behind
upon departure of our customer is equal to {dn}∞n=0 (since the system is in equilibrium).
In considering a first-come first-served system it is clear that all customers left behind are
precisely those who arrived during his stay in the system. Thus we have (cf. (2))

dn =
∫ ∞

t=0

(λt)n

n!
e−λtfS(t)dt.

Hence, we find similarly to (5) that

PLd(z) = S̃(λ − λz).
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Substitution of this relation into (6) yields

S̃(λ − λz) =
(1 − ρ)B̃(λ − λz)(1 − z)

B̃(λ − λz) − z
.

Making the change of variable s = λ − λz we finally arrive at

S̃(s) =
(1 − ρ)B̃(s)s

λB̃(s) + s − λ
. (7)

This formula is also known as the Pollaczek-Khinchin formula.

Example 4.4 (M/M/1)
For exponential service times with mean 1/µ we have

B̃(s) =
µ

µ + s
.

Thus

S̃(s) =
(1 − ρ) µ

µ+s
s

λ µ
µ+s

+ s − λ
=

(1 − ρ)µs

λµ + (s − λ)(µ + s)
=

(1 − ρ)µs

(µ − λ)s + s2
=

µ(1 − ρ)

µ(1 − ρ) + s
.

Hence, S is exponentially distributed with parameter µ(1 − ρ), i.e.,

FS(t) = P (S ≤ t) = 1 − e−µ(1−ρ)t, t ≥ 0.

Example 4.5 (M/E2/1)
Suppose that λ = 1 and that the service time is Erlang-2 distributed with mean 1/3, so

B̃(s) =
(

6

6 + s

)2

.

Then it follows that (verify)

FS(t) =
8

5
(1 − e−3t) − 3

5
(1 − e−8t), t ≥ 0.

Example 4.6 (M/H2/1)
Consider example 4.3 again. From (7) we obtain (verify)

FS(t) =
27

32
(1 − e−t/2) +

5

32
(1 − e−3t/2), t ≥ 0.

7



4.4 Distribution of the waiting time

We have that S, the time spent in the system by a customer, is the sum of W (his waiting
time) and B (his service time), where W and B are independent. Since the transform of
the sum of two independent random variables is the product of the transforms of these two
random variables, it holds that

S̃(s) = W̃ (s) · B̃(s). (8)

Together with (7) it follows that

W̃ (s) =
(1 − ρ)s

λB̃(s) + s − λ
, (9)

which is the third form of the Pollaczek-Khinchin formula.

Example 4.7 (M/M/1)
For exponential service times with mean 1/µ we have

B̃(s) =
µ

µ + s
.

Then from (9) it follows that (verify)

W̃ (s) = (1 − ρ) + ρ · µ(1 − ρ)

µ(1 − ρ) + s
.

The inverse transform yields

FW (t) = P (W ≤ t) = (1 − ρ) + ρ(1 − e−µ(1−ρ)t), t ≥ 0.

Hence, with probability (1−ρ) the waiting time is zero (i.e., the system is empty on arrival)
and, given that the waiting time is positive (i.e., the system is not empty on arrival), the
waiting time is exponentially distributed with parameter µ(1 − ρ).

4.5 Mean value approach

The mean waiting time can of course be calculated from the Laplace-Stieltjes transform
(9) by differentiating and substituting s = 0. In this section we show that the mean
waiting time can also be determined directly (i.e., without transforms) with the mean
value approach.

A new arriving customer first has to wait for the residual service time of the customer
in service (if there is one) and then continues to wait for the servicing of all customers who
were already waiting in the queue on arrival. By PASTA we know that with probability ρ
the server is busy on arrival. Let the random variable R denote the residual service time
and let Lq denote the number of customers waiting in the queue. Hence,

E(W ) = E(Lq)E(B) + ρE(R),
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and by Little’s law (applied to the queue),

E(Lq) = λE(W ).

So we find

E(W ) =
ρE(R)

1 − ρ
. (10)

Formula (10) is commonly referred to as the Pollaczek-Khinchin mean value formula. It
remains to calculate the mean residual service time. In the following section we will show
that

E(R) =
E(B2)

2E(B)
, (11)

which may also be written in the form

E(R) =
E(B2)

2E(B)
=

σ2
B + E(B)2

2E(B)
=

1

2
(c2

B + 1)E(B). (12)

An important observation is that, clearly, the mean waiting time only depends upon the
first two moments of service time (and not upon its distribution). So in practice it is
sufficient to know the mean and standard deviation of the service time in order to estimate
the mean waiting time.

4.6 Residual service time

Suppose that our customer arrives when the server is busy and denote the total service
time of the customer in service by X. Further let fX(·) denote the density of X. The basic
observation to find fX(·) is that it is more likely that our customer arrives in a long service
time than in a short one. So the probability that X is of length x should be proportional
to the length x as well as the frequency of such service times, which is fB(x)dx. Thus we
may write

P (x ≤ X ≤ x + dx) = fX(x)dx = CxfB(x)dx,

where C is a constant to normalize this density. So

C−1 =
∫ ∞

x=0
xfB(x)dx = E(B).

Hence

fX(x) =
xfB(x)

E(B)
.

Given that our customer arrives in a service time of length x, the arrival instant will be
a random point within this service time, i.e., it will be uniformly distributed within the
service time interval (0, x). So

P (t ≤ R ≤ t + dt|X = x) =
dt

x
, t ≤ x.
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Of course, this conditional probability is zero when t > x. Thus we have

P (t ≤ R ≤ t + dt) = fR(t)dt =
∫ ∞

x=t

dt

x
fX(x)dx =

∫ ∞
x=t

fB(x)

E(B)
dxdt =

1 − FB(t)

E(B)
dt.

This gives the final result

fR(t) =
1 − FB(t)

E(B)
,

from which we immediately obtain, by partial integration,

E(R) =
∫ ∞

t=0
tfR(t)dt =

1

E(B)

∫ ∞
t=0

t(1 − FB(t))dt =
1

E(B)

∫ ∞
t=0

1

2
t2fB(t)dt =

E(B2)

2E(B)
.

This computation can be repeated to obtain all moments of R, yielding

E(Rn) =
E(Bn+1)

(n + 1)E(B)
.

Example 4.8 (Erlang service times)
For an Erlang-r service time with mean r/µ we have

E(B) =
r

µ
, σ2(B) =

r

µ2
,

so

E(B2) = σ2(B) + (E(B))2 =
r(1 + r)

µ2
.

Hence

E(R) =
1 + r

2µ
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