
12

/k 1/56

Systems:

• Continuous systems
State changes continuously in time (e.g., in chemical applications)

• Discrete systems
State is observed at fixed regular time points (e.g., periodic review inven-
tory system)

• Discrete-event systems
The system is completely determined by random event times t1, t2, . . .
and by the changes in state taking place at these moments (e.g., produc-
tion line, queueing system)

12

/k 2/56

Time advance:

• Look at regular time points 0,∆, 2∆, . . . (synchronous simulation); in
continuous systems it may be necessary to take ∆ very small

• Jump from one event to the next and describe the changes in state at
these moments (asynchronous simulation)

We will concentrate on asynchronuous simulation of discrete-event systems

12

/k 3/56

Terms often used:

• System
Collection of objects interacting through time (e.g. production system)

• Model
Mathematical representation of a system (e.g., queueing or fluid model)

• Entity
An object in a system (e.g., jobs, machines)

• Attribute
Property of an entity (e.g., arrival time of a job)

• Linked list
Collection of records chained together

12

/k 4/56

• Event
Change in state of a system

• Event notice
Record describing when event takes place

• Process
Collection of events ordered in time

• Future-event set
Linked list of event notices ordered by time (FES)

• Timing routine
Procedure maintaining FES and advancing simulated time

12

/k 5/56

Basic approaches for constructing a discrete-event simulation model:

• Event-scheduling approach
Focuses on events, i.e., the moments in time when state changes occur

• Process-interaction approach
Focuses on processes, i.e., the flow of each entity through the system

In general-purpose languages one mostly uses the event-scheduling appro-
ach; simulation languages (e.g., χ) use the process-interaction approach

12

/k 6/56

Event-scheduling approach

Example: Single-stage production system

Machine
Jobs

A single machine processes jobs in order of arrival. The interarrival times
and processing times are exponential with parameters λ and µ (with λ < µ).

• What is the mean waiting time?

• What is the mean queue length?

• What is the mean length of a busy period?

• How does the performance change if we speed up the machine?

12

/k 7/56

Discrete simulation:

An the interarrival time between job n and n + 1

Bn the processing time of job n

Wn the waiting time of job n

Then (Lindley’s equation):

Wn+1 = max(Wn + Bn − An, 0)

12

/k 8/56

Initialization

n = 0 {job number}
w = 0 {waiting time of job n

we assume that initially the system is empty}
sum_w = 0 {sum of all waiting times upto job n}

Main program

while (n < N)
do

a = interarrival_time
b = service_time
w = max(w + b - a, 0)
sum_w = sum_w + w
n = n + 1

end

Output
Mean waiting time = sum_w / N

12

/k 9/56

Discrete-event simulation:

Entity Attribute

Job Arrival time

Machine Status (idle or busy)

Job is a temporary entity
Machine is a permanent entity

12

/k 10/56

Elementary events

Job: Machine:

arrival remove from queue

departure become busy

begin service become idle

end service

join queue

12

/k 11/56

Compound events

Arrival

become busy

join queue

begin service

arrival

12

/k 12/56

Departure

remove from

begin service

become idle

departureend service

queue

12

/k 13/56

State of the system at time t:

• status of the machine (i = 0, 1)

• number of jobs in the queue (n = 0, 1, 2, . . .)

• remaining interarrival time (a ≥ 0)

• remaining service time (b ≥ 0)

Then the remaining time until the next event is given by

min(a, b)

12

/k 14/56

Prototypical event-scheduling approach:

program

schedule

initial events

timing
routine

end

simulation

show
statistics

end

12

/k 15/56

timing
routine

execute
event

advance time
to next event
time

time <
run length?

simulation
end

select next
event from

FES

no

yes

12

/k 16/56

Record Job = (arrival time, ..., successor address)

Record Event = (class, clock, ..., successor address)

The queue is a linked list of Job records ordered according to arrival time

The FES is a linked list of Event records ordered according to clock time

arrival
time

arrival
time

arrival
time

nilQueue

clockclassFES class clock nilclass clock

12

/k 17/56

Arrival event:

arrival create
Job

determine
time next
arrival

schedule
next
arrival

attempt
service

succes?
service
arrange

yes

no

join queue

select next
event

12

/k 18/56

Departure event:

departure queue
empty?

get first
job from
queue

arrange
service

select next
event

machine
becomes
idle

no

yes

12

/k 19/56

Initialization

t = 0 {current time}
queue = nil {queue is empty}
generate and schedule first arrival
N = 0 {number of jobs processed}
sum_w = 0 {sum of waiting times of processed jobs}

12

/k 20/56

Main program

while (t < run_length)
do
determine next_event
t = event_time
case next_event of

arrival_event:
generate and schedule next arrival
if machine = busy
then create and add job to queue
else
machine = busy
N = N + 1
generate and schedule next departure

12

/k 21/56

departure_event:
if queue not empty
then
get first job from queue
N = N + 1
sum_w = sum_w + waiting_time
generate and schedule next departure

else machine = idle
end

Output

Mean waiting time = sum_w / N

12

/k 22/56

Implementation in C

Definition of records: Events and Jobs
typedef struct job {

double arrival_time;
struct job *next_job;

}

job;

typedef struct event {
int class;
double clock;
struct event *next_event;

}

event;

event *FES, /* linked list of events */
Used_events; / linked list of used event notices */

job *Queue, /* linked list of jobs */
Used_jobs; / linked list of used job records */

12

/k 23/56

Operations on the FES: create and destroy
event *create_event()
{

event *temp;

if (Used_events == NIL)
return (event *) malloc(sizeof(event));

else {
temp = Used_events;
Used_events = Used_events->next_event;
return temp;

}
}

void destroy_event(event * pntr)
{

pntr->next_event = Used_events;
Used_events = pntr;

}

12

/k 24/56

Operations on the FES: next and add

event *next_event()
{

event *pntr;

if (FES == NIL)
return NIL; /* FES is empty */

else {
pntr = FES;
FES = FES->next_event;
return pntr;

}
}

12

/k 25/56

void add_event(event * pntr)
{

event *link,
*prev;

if (FES == NIL) {
FES = pntr;
FES->next_event = NIL;

} else {
if (pntr->clock <= FES->clock) {

pntr->next_event = FES;
FES = pntr;

} else {
prev = FES;
link = FES->next_event;
while (link != NIL && pntr->clock > link->clock) {

prev = link;
link = link->next_event;

}
prev->next_event = pntr;
pntr->next_event = link;

}
}

}

12

/k 26/56

Initialization

void initialization()
{

srand48(seed);

t = 0.0;
busy = FALSE;
Queue = NIL;
Used_jobs = NIL;

/* initialize FES */
FES = create_event();
FES->class = ARRIVAL;
FES->clock = interarrivaltime();
FES->next_event = NIL;

Used_events = NIL;

N = 0;
sum_w = 0.0;

}

12

/k 27/56

Main program

main()
{

event *pntr;

getinput();
initialization();

while (t < run_length) {
pntr = next_event();
t = pntr->clock; /* advance time */
switch (pntr->class) {
case ARRIVAL:

arrival_event();
break;

case DEPARTURE:
departure_event();
break;

case NIL:
printf("FES is empty\n");
exit(1);
break;

}
destroy_event(pntr);

}

output();
}

12

/k 28/56

Compound event Arrival

void arrival_event()
{

event *pntr_event;
job *pntr_job;

pntr_event = create_event(); /* schedule next arrival */
pntr_event->class = ARRIVAL;
pntr_event->clock = t + interarrivaltime();
add_event(pntr_event);

if (busy) {
pntr_job = create_job();
pntr_job->arrival_time = t;
add_job(pntr_job);
if (Queue == NIL)

printf("queue is nil\n");
} else {

busy = TRUE;
N ++;
pntr_event = create_event();
pntr_event->class = DEPARTURE;
pntr_event->clock = t + servicetime();
add_event(pntr_event);

}
}

12

/k 29/56

Compound event Departure

void departure_event()
{

double waiting_time;
event *pntr_event;
job *pntr_job;

if (Queue != NIL) {
pntr_job = next_job();
N ++;
waiting_time = t - pntr_job->arrival_time;
sum_w += waiting_time;
destroy_job(pntr_job);
pntr_event = create_event(); /* schedule next departure */
pntr_event->class = DEPARTURE;
pntr_event->clock = t + servicetime();
add_event(pntr_event);

} else /* Queue is empty */
busy = FALSE;

}

12

/k 30/56

Proces-Interaction approach

This approach focusses on describing processes;
In the event-scheduling approach one regards a simulation as executing a
sequence of events ordered in time; but no time elapses within an event.

The process-interaction approach provides a process for each entity in the
system; and time elapses during a process.

In production systems we have processes for:

• Arrivals

• Buffers

• Machines

• Exit

12

/k 31/56

Example: Single-stage production system

Machine

Buffer
Arrivals Exit

A single machine processes jobs in order of arrival. The interarrival times
and processing times are exponential with parameters λ and µ (with λ < µ).

• What is the mean waiting time?

• What is the mean queue length?

• What is the mean length of a busy period?

• How does the performance change if we speed up the machine?

12

/k 32/56

Arrival process

Generate arrival after random (exponential) time units

arrival

12

/k 33/56

Buffer process

Add job to buffer and remove job from buffer (if there is any)

0 1 n n+1

12

/k 34/56

Machine process

Process job (if there is any)

idle

busy

12

/k 35/56

Exit process

Accept completed job and do accounting

departure accounting

12

/k 36/56

The specification language χ:

Modelling and simulation tool for the design of manufacturing systems

The language χ has been developed by the Systems Engineering group

For documentation, see http://se.wtb.tue.nl/documentation

http://w3.wtb.tue.nl/nl/onderzoek/research_groups/systems_engineering/se_home/?id=35933
http://w3.wtb.tue.nl/nl/onderzoek/research_groups/systems_engineering/se_documentation/

12

/k 37/56

Arrival process

type job=real

proc G(a: !job, ta: real) =
|[u: -> real
| u:=negexp(ta)
; *[true -> a!time; delta sample u]
]|

12

/k 38/56

Buffer process

proc B(a: ?job, b:!job) =
|[xs: job*, x: job
| xs:=[]
; *[true; a?x -> xs:= xs ++ [x]

| len(xs)>0; b!hd(xs) -> xs:= tl(xs)
]

]|

12

/k 39/56

Machine process

proc M(a: ?job, b: !job, te: real) =
|[u: -> real, x: job
| u:=negexp(te)
; *[true -> a?x; delta sample u; b!x]
]|

12

/k 40/56

Exit process

proc E(a: ?job) =
|[ct,mct: real, n: nat, x: job
| ct:= 0.0
; mct:= 0.0
; n:= 0
; *[true -> a?x

; ct:= time - x
; n:= n + 1
; mct:= (n-1)/n*mct + ct/n
; !"Mean throughput time ", mct, nl()

]
]|

12

/k 41/56

System and simulation experiment

clus S() =
|[a,b,c: -job
| G(a,1.0) || B(a,b) || M(b,c,0.5) || E(c)
]|

xper = |[S()]|

12

/k 42/56

Complete χ code

from std import *
from random import *

type job=real

proc G(a: !job, ta: real) =
|[u: -> real
| u:=negexp(ta)
; *[true -> a!time; delta sample u]

]|

proc B(a: ?job, b: !job) =
|[xs: job*, x: job
| xs:=[]
; *[true; a?x -> xs:= xs ++ [x]

| len(xs)>0; b!hd(xs) -> xs:= tl(xs)
]

]|

proc M(a: ?job, b: !job, te: real) =
|[u: -> real, x: job
| u:=negexp(te)
; *[true -> a?x; delta sample u; b!x]

]|

12

/k 43/56

proc E(a: ?job) =
|[ct,mct: real, n: nat, x: job
| ct:= 0.0
; mct:= 0.0
; n:= 0
; *[true -> a?x

; ct:= time - x
; n:= n + 1
; mct:= (n-1)/n*mct + ct/n
; !"Mean throughput time ", mct, nl()

]
]|

clus S() =
|[a,b,c: -job
| G(a,1.0) || B(a,b) || M(b,c,0.5) || E(c)

]|

xper = |[S()]|

12

/k 44/56

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

0 10 20 30 40 50 60 70 80 90 100

Mean throughput time as a function of the number of jobs processed for
λ = 1 and µ = 2

12

/k 45/56

More examples...

Other interarrival and service time distributions

χ has a library available for sampling from distributions, e.g.,

• Bernouilli

• Binomial

• Poisson

• Beta

• Gamma

• Normal

• etc...

http://se.wpa.wtb.tue.nl/documentation/mauals/chi07/libref.pdf

12

/k 46/56

Example: Single-stage production system with three parallel machines
In the χ program we have to add channels to the buffer and exit process:

proc B(a: ?job, b,c,d: !job) =
|[xs: job*, x: job
| xs:=[]
; *[true; a?x -> xs:= xs ++ [x]

| len(xs)>0; b!hd(xs) -> xs:= tl(xs)
| len(xs)>0; c!hd(xs) -> xs:= tl(xs)
| len(xs)>0; d!hd(xs) -> xs:= tl(xs)
]

]|
proc E(a,b,c: ?job) =
|[ct,mct: real, n: nat, x: job
| ct:= 0.0
; mct:= 0.0
; n:= 0
; *[true -> [true; a?x -> skip

| true; b?x -> skip
| true; c?x -> skip
]

; ct:= time - x
; n:= n + 1
; mct:= (n-1)/n*mct + ct/n
; !"Mean throughput time ", mct, nl()

]
]|
clus S() =
|[a,b,c,d,e,f,g: -job
| M(b,e,0.5)
|| G(a,1.0) || B(a,b,c,d) || M(c,f,0.5) || E(e,f,g)
|| M(d,g,0.5)

]|

12

/k 47/56

Example: Two-stage production system

Jobs
Machine 1 Machine 2

Jobs are processed by two machines in series. Each machine has its own
local buffer and processes jobs in order of arrival. The interarrival and
processing times of jobs are exponential with parameters λ, µ1 and µ2.

What is the mean (overall) throughput time?

In the χ program we only have to change the system:

clus S() =
|[a,b,c,d,e: -job
| G(a,1.0) || B(a,b) || M(b,c,0.5) || B(c,d) || M(d,e,0.5) || E(e)

]|

12

/k 48/56

The simulation system Arena

In Arena you can construct simulation models without programming, but
simply with click, drag and drop...

Student version of Arena is available in the Public Folders in Outlook;
look in Software/Overig

Book with CD-ROM:

W. David Kelton, Randall P. Sadowski, Deborah A. Sadowski:
Simulation with Arena. 2nd ed., London: McGraw-Hill, 2002

12

/k 49/56

Output analysis of a simulation

Method of independent replications

Example: Long-term ("steady-state") mean waiting time E(W) in the
single-stage production line

Produce n independent sample paths of waiting times W (i)
1 ,W

(i)
2 , . . . ,W

(i)
N

and compute

W̄
(i)
N =

1

N

N∑
j=1

W
(i)
j , i = 1, . . . , n.

12

/k 50/56

Then, for large N , an approximate 100(1 − δ)% confidence interval for the
mean waiting time E(W) is

W̄n,N ± z1−δ/2
Sn,N√
n

where W̄n,N and S2
n,N are the sample mean and variance of the realizations

W̄
(1)
N , . . . , W̄

(n)
N ;

W̄n,N =
1

n

n∑
i=1

W̄
(i)
N

S2
n,N =

1

n− 1

n∑
i=1

(W̄
(i)
N − W̄n,N)2

12

/k 51/56

Results for λ = 0.5, µ = 1 and 10 runs, each of N = 104 waiting times

i W̄
(i)
N

1 0.995
2 1.002
3 0.959
4 1.037
5 0.902
6 1.011
7 1.125
8 1.007
9 1.075

10 1.044

E(W) = 1.016± 0.036 (95% confidence interval)

12

/k 52/56

Results for λ = 0.9, µ = 1 and 10 runs, each of N = 104 waiting times

i W̄
(i)
N

1 7.373
2 8.496
3 8.574
4 7.752
5 8.637
6 7.404
7 9.556
8 8.863
9 8.537

10 11.000

E(W) = 8.619± 0.632 (95% confidence interval)

Clearly, a more congested system is harder to simulate! To obtain a more
accurate estimate should we increase the number of runs and/or the length
of each run? And, how much?

12

/k 53/56

Problem of the initialization effect

We are interested in the long-term behaviour of the system and maybe the
choice of the initial state of the simulation will influence the quality of our
estimate.
One way of dealing with this problem is to choose N very large and to ne-
glect this initialization effect. However, a better way is to throw away in each
run the first k observations, i.e. we set

W̄
(i)
N =

1

N − k

N∑
j=k+1

W
(i)
j .

We call k the length of the warm-up period and it can be determined by a
graphical procedure.
Disadvantage of the independent replication method is that we have the ini-
tialization effect in each simulation run.

12

/k 54/56

Output analysis of a simulation

Batch means

Instead of doing n independent runs, we try to obtain n independent
observations by making a single long run and, after deleting the first k
observations, dividing this run into n subruns.

The advantage is that we have to go through the warm-up period only once.

12

/k 55/56

Let W1,W2, . . . ,WnN be the output of a single run, where we have already
deleted the first k observations and renumbered the remaining ones. Hence
W1,W2, . . . ,WnN will be representative for the steady-state. We divide the
observations into n batches of length N . Thus, batch 1 consists of

W1,W2, . . . ,WN ;

batch 2 of
WN+1,WN+2, . . . ,W2N ,

and so on. Let W̄ (i)
N be the sample (or batch) mean of the N observations in

batch i, so

W̄
(i)
N =

1

N

iN∑
j=(i−1)N+1

Wj

12

/k 56/56

The W̄ (i)
N ’s play the same role as the ones in the independent replication

method. Unfortunately, the W̄ (i)
N ’s will now be dependent.

But, under mild conditions, for large N the W̄ (i)
N ’s will be approximately

independent, each with the same mean E(W).
Hence, for N large enough, it is reasonable to treat the W̄ (i)

N ’s as i.i.d.
random variables with mean E(W); thus

W̄n,N ± z1−δ/2
Sn,N√
n

provides again a 100(1 − δ)% confidence interval for E(W), with
W̄n,N and S2

n,N again the sample mean and variance of the realizations

W̄
(1)
N , . . . , W̄

(n)
N ; .

