Sampling from continuous distributions

Inverse Transform Method:

Let the random variable X have a continuous and increasing distribution function F. Denote the inverse of F by F^{-1}. Then X can be generated as follows:

- Generate U from $U(0,1)$;
- Return $X=F^{-1}(U)$.

If F is not continuous or increasing, then we have to use the generalized inverse function

$$
F^{-1}(u)=\min \{x: F(x) \geq u\} .
$$

Examples:

- $X=a+(b-a) U$ is uniform on (a, b);
- $X=-\ln (U) / \lambda$ is exponential with parameter λ;
- $X=(-\ln (U))^{1 / a} / \lambda$ is Weibull, parameters a and λ.

Unfortunately, for many distribution functions we do not have an easy-touse (closed-form) expression for the inverse of F.

Composition method:

This method applies when the distribution function F can be expressed as a mixture of other distribution functions F_{1}, F_{2}, \ldots,

$$
F(x)=\sum_{i=1}^{\infty} p_{i} F_{i}(x)
$$

where

$$
p_{i} \geq 0, \quad \sum_{i=1}^{\infty} p_{i}=1
$$

The algorithm is as follows:

- First generate an index I such that

$$
P(I=i)=p_{i}, \quad i=1,2, \ldots
$$

- Generate a random variable X with distribution function F_{I}.

Examples:

- Hyper-exponential distribution:

$$
F(x)=p_{1} F_{1}(x)+p_{2} F_{2}(x)+\cdots+p_{k} F_{k}(x), \quad x \geq 0,
$$

where $F_{i}(x)$ is the exponential distribution with parameter $\mu_{i}, i=$ $1, \ldots, k$.

- Double-exponential (or Laplace) distribution:

$$
f(x)= \begin{cases}\frac{1}{2} e^{x}, & x<0 \\ \frac{1}{2} e^{-x}, & x \geq 0\end{cases}
$$

where f denotes the density of F.

Convolution method:
In some case X can be expressed as a sum of independent random variables Y_{1}, \ldots, Y_{n}, so

$$
X=Y_{1}+Y_{2}+\cdots+Y_{n} .
$$

where the Y_{i} 's can be generated more easily than X.
Algorithm:

- Generate independent Y_{1}, \ldots, Y_{n}, each with distribution function G;
- Return $X=Y_{1}+\cdots+Y_{n}$.

Example:

If X is Erlang distributed with parameters n and μ, then X can be expressed as a sum of n independent exponentials Y_{i}, each with mean $1 / \mu$.

Algorithm:

- Generate n exponentials Y_{1}, \ldots, Y_{n}, each with mean μ;
- Set $X=Y_{1}+\cdots+Y_{n}$.

More efficient algorithm:

- Generate n uniform $(0,1)$ random variables U_{1}, \ldots, U_{n};
- Set $X=-\ln \left(U_{1} U_{2} \cdots U_{n}\right) / \mu$.

Acceptance-Rejection method:

Denote the density of X by f. This method requires a function g that majorizes f,

$$
g(x) \geq f(x)
$$

for all x. Now g will not be a density, since

$$
c=\int_{-\infty}^{\infty} g(x) d x \geq 1
$$

Assume that $c<\infty$. Then $h(x)=g(x) / c$ is a density.
Algorithm:
ı. Generate Y having density h;
2. Generate U from $U(0,1)$, independent of Y;
3. If $U \leq f(Y) / g(Y)$, then set $X=Y$; else go back to step i.

The random variable X generated by the above algorithm has density f.

Validity of the Acceptance-Rejection method:

Note

$$
P(X \leq x)=P(Y \leq x \mid Y \text { accepted }) .
$$

Now,

$$
P(Y \leq x, Y \text { accepted })=\int_{-\infty}^{x} \frac{f(y)}{g(y)} h(y) d y=\frac{1}{c} \int_{-\infty}^{x} f(y) d y
$$

and thus, letting $x \rightarrow \infty$ gives

$$
P(Y \text { accepted })=\frac{1}{c} .
$$

Hence,

$$
P(X \leq x)=\frac{P(Y \leq x, Y \text { accepted })}{P(Y \text { accepted })}=\int_{-\infty}^{x} f(y) d y
$$

Note that the number of iterations is geometrically distributed with mean c.
How to choose g ?

- Try to choose g such that the random variable Y can be generated rapidly;
- The probability of rejection in step 3 should be small; so try to bring c close to 1 , which mean that g should be close to f.

Example:

The Beta $(4,3)$ distribution has density

$$
f(x)=60 x^{3}(1-x)^{2}, \quad 0 \leq x \leq 1 .
$$

The maximal value of f occurs at $x=0.6$, where $f(0.6)=2.0736$. Thus, if we define

$$
g(x)=2.0736, \quad 0 \leq x \leq 1,
$$

then g majorizes f.
Algorithm:
I. Generate Y and U from $U(0,1)$;
2. If

$$
U \leq \frac{60 Y^{3}(1-Y)^{2}}{2.0736}
$$

then set $X=Y$; else reject Y and return to step i.

Generating Normal random variables

Methods:

- Acceptance-Rejection method
- Box-Muller method

Acceptance-Rejection method:

If X is $N(0,1)$, then the density of $|X|$ is given by

$$
f(x)=\frac{2}{\sqrt{2 \pi}} e^{-x^{2} / 2}, \quad x>0
$$

Now the function

$$
g(x)=\sqrt{2 e / \pi} e^{-x}
$$

majorizes f. This leads to the following algorithm:
i. Generate an exponential Y with mean I;
2. Generate U from $U(0,1)$, independent of Y;
3. If

$$
U \leq e^{-(Y-1)^{2} / 2}
$$

then accept Y; else reject Y and return to step i.
4. Return $X=Y$ or $X=-Y$, both with probability $1 / 2$.

Box-Muller method:

If U_{1} and U_{2} are independent $U(0,1)$ random variables, then

$$
\begin{aligned}
& X_{1}=\sqrt{-2 \ln U_{1}} \cos \left(2 \pi U_{2}\right) \\
& X_{2}=\sqrt{-2 \ln U_{1}} \sin \left(2 \pi U_{2}\right)
\end{aligned}
$$

are independent standard normal random variables.

