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Warm-up interval

Let W1,W2, . . . ,WN be realizations of waiting times in a single run, and
suppose we want to estimate the steady-state mean waiting time E(W ), de-
fined as

E(W ) = lim
j→∞

E(Wj)

by the sample mean

W̄N =
1

N

N∑
j=1

Wj
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In this estimate there are two types of errors:

• Systematic error, or bias
This means that

E(W̄N) 6= E(W ),

due to the influence of the initial conditions, which may not be “repre-
sentative” for steady-state behavior;

• Sampling (or random) error
The estimator W̄N is of course a random variable.
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To reduce the systematic error, we delete the initial observations, say
W1, . . . ,Wk, and use the remaining observations Wk+1, . . . ,WN to esti-
mate E(W ) by the truncated sample mean

W̄k,N =
1

N − k

N∑
j=k+1

Wj

Then one expects that W̄k,N is less biased than W̄N , since the observations
near the beginning of the simulation may not be representative for steady-
state behavior; the parameter k is called the warm-up interval.
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How to choose the warm-up interval k?

We like to pick k such that E(W̄k,N) ≈ E(W ).

• If k is too small, then E(W̄k,N) may be significantly different from
E(W );

• If k is too large, then the variance of W̄k,N (the sampling error) may be
too large (its variance is proportional to 1/(N − k)).
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Waiting times (higly oscillating curve) and truncated sample means (smoot-
her curve) for the M/M/1 queue with λ = 0.5 and µ = 1;

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

0 10 20 30 40 50 60 70 80 90 100



/k

12

6/30

Graphical procedure to determine k

Our goal is determine a value k such that

E(Wj) ≈ E(W )

for all j > k.

The presence of variability of the process W1,W2, . . . makes it hard to
determine k from a single run.

Therefore, the idea is to make n independent replications (by using different
random numbers) and employing the following steps:
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1. Make n independent replications (or runs), each of length N ; let W (i)
j

denote the j-th waiting time in run i.

2. Let

W̄j =
1

n

n∑
i=1

W
(i)
j

The averaged process W̄1, W̄2, . . . has means and variances

E(W̄j) = E(Wj), var(W̄j) = var(Wj)/n.

So its mean behavior is the same as the original process, but it has a
smaller (1/n-th) variance.

3. Plot W̄j and choose k such that beyond k the process W̄1, W̄2, . . . appe-
ars to have converged.
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Waiting times for the M/M/1 queue with λ = 0.5 and µ = 1;

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

0 10 20 30 40 50 60 70 80 90 100



/k

12

9/30

Averaged waiting times for the M/M/1 queue with λ = 0.5 and µ = 1;
number of replications is 5.
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Averaged waiting times for the M/M/1 queue with λ = 0.5 and µ = 1;
number of replications is 10.
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Averaged waiting times for the M/M/1 queue with λ = 0.5 and µ = 1;
number of replications is 100.
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To smooth “high-frequency” oscillations in W̄1, W̄2, . . . (but leave the trend)
one may consider the moving average W̄j(w) (where w is the window size)
defined as:

W̄j(w) =
1

2w + 1

w∑
i=−w

W̄j+i

for j = w + 1, w + 2, . . . , N − w, and

W̄j(w) =
1

2j − 1

j−1∑
i=−(j−1)

W̄j+i

for j = 1, . . . , w.

The warm-up interval k can then be determined from the plot of W̄j(w) for
j = 1, . . . , N − w.
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Moving average of averaged waiting times for the M/M/1 queue with λ =
0.5 and µ = 1; number of replications is 10 and window size is 5.
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Moving average of averaged waiting times for the M/M/1 queue with λ =
0.5 and µ = 1; number of replications is 10 and window size is 10.
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Moving average of averaged waiting times for the M/M/1 queue with λ =
0.5 and µ = 1; number of replications is 100 and window size is 10.
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Observations:

• As k increases for fixed N , then the systematic error decreases, but the
random error increases;

• As N increases for fixed k, then both systematic and random error de-
crease;

• Averages (or moving averages) based on n independent replications (that
start in the same initial state) provide a basis for determining the warm-
up interval k;

• Random fluctuations in these averages decrease when the number of
replications increases;

• Systematic errors in these averages remain unaffected by increasing the
number of replications.
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Interval estimates

Let X1, X2, . . . , XN be the output of a single run; for example, Xi is the
waiting time of the i-th customer.
Suppose we want to estimate the steady-state mean

µ = lim
i→∞

E(Xi)

by the (truncated) sample mean

Y =
1

N − k

N∑
j=k+1

Xj

where k is the warm-up interval; k can be determined by a graphical proce-
dure.

The sample mean Y is a point estimate; there are several approaches for
obtaining an interval estimate for the steady-state mean µ.



/k

12

18/30

Independent replications

Make n independent runs, each ofN observations, whereN is much larger
then the warm-up interval k. LetX (i)

j denote the j-th realization time in run
i and

Yi =
1

N − k

N∑
j=k+1

X
(i)
j

for i = 1, . . . , n. So Yi only uses the observations from run i corresponding
to ‘steady-state.’
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The Yi’s are i.i.d. random variables with E(Yi) ≈ µ, so the sample mean
Ȳ (n) is an unbiased estimater for µ, and an approximate 100(1− δ)% con-
fidence interval for µ is given by

Ȳ (n)± tn−1,1−δ/2
S(n)√
n

where

Ȳ (n) =
1

n

n∑
i=1

Yi ;

S2(n) =
1

n− 1

n∑
i=1

(Yi − Ȳ (n))2

and tn−1,β denotes the β-quantile of the Student’s t distribution with n − 1
degrees of freedom.
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It is an approximate confidence interval for µ, because:

• E(Yi) ≈ µ;

• Yi is approximately normally distributed.

Under certain conditions (AWA; see Th. 6.3 in DES) it holds for fixed k and
n, that

(Ȳ (n)− µ)/
√
S2(n)/n

d→ τn−1

as N →∞, where τn−1 denotes Student’s t distribution with n− 1 degrees
of freedom.

Hence, the confidence interval for µ is asymptotically valid as N →∞.
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Comments on the independent replication approach:

• It is easy to understand and implement;

• It gives reasonably good statistical performance;

• The approach applies to many output parameters (waiting times, queue
lenghts, etc.);

• It can be easily used to simultaneaously estimate different parameters
for the same simulation model.
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Batch means

Instead of doing n independent runs, we try to obtain n independent
observations by making a single long run and, after deleting the first k
observations, dividing this run into n subruns.

The advantage is that we have to go through the warm-up period only once.
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LetX1, X2, . . . , XN be the output of a single run, where we have already de-
leted the first k observations and renumbered the remaining ones. Hence
X1, X2, . . . , XN will be approximately stationary. We divide the observati-
ons X1, X2, . . . , XN into n batches of length b (assume N = nb). Thus,
batch 1 consists of

X1, X2, . . . , Xb;

batch 2 of
Xb+1, Xb+2, . . . , X2b,

and so on. Let Yi be the sample (or batch) mean of the b observations in
batch i, so

Yi =
1

b

ib∑
j=(i−1)b+1

Xj
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The Yi’s play the same role as the ones in the independent replication
method. Unfortunately, the Yi’s will now be dependent.

But, under mild conditions, for large b the Yi’s will be approximately inde-
pendent and normally distributed, each with the same mean µ and the same
variance.
Hence, for b large enough, it is reasonable to treat the Yi’s as i.i.d. normal
random variables with mean µ; thus

Ȳ (n)± tn−1,1−δ/2
S(n)√
n

provides again a 100(1− δ)% confidence interval for µ.
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Dealing with dependence

This approach ‘neglects’ the dependence between the Yi’s; alternatively,
we may take into account (part of) the dependence when constructing a
confidence interval.

The classical Central Limit Theorem states that for i.i.d. random variables
Y1, . . . , Yn, ∑n

i=1 Yi − E(
∑n

i=1 Yi)√
var(

∑n
i=1 Yi)

is approximately standard normally distributed. This remains valid if the
Yi’s are weakly dependent:

cov(Yi, Yi+j)→ 0

as j →∞.
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For a stationary process Y1, Y2, . . . we have

var

(
n∑
i=1

Yi

)
= nvar(Y ) + 2

n−1∑
j=1

(n− j)cov(Y1, Y1+j)

In the first approach we replaced the variance of the sum

var

(
n∑
i=1

Yi

)
by

nvar(Y )
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As often the case in practice, the Xi’s and thus the Yi’s are positively corre-
lated. Then the estimator for the variance will be biased low, which gives a
confidence interval that is too small.

Thus the confidence interval will cover µ with a probability that is smaller
than the desired 1− δ.
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If we want to take into account part of the dependence, say the dependence
between succesive observations, then we can replace

var

(
n∑
i=1

Yi

)
by

nvar(Y ) + 2(n− 1)cov(Y1, Y2)

and then construct a confidence interval.
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The unknown quantities var(Y ) and cov(Y1, Y2) can be estimated by their
sample estimates

1

n− 1

n∑
i=1

(Yi − Ȳ (n))2

and
1

n− 1

n−1∑
i=1

(Yi − Ȳ (n))(Yi+1 − Ȳ (n))
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In your final assignment please pay attention to:

• Input analysis
(How does it look? Fitting? ...)

• Output analysis
(Warm-up interval, length and number of runs, confidence intervals, ...)

• Model description
(Modeling assumptions, simplifications, ...)

• Validation of simulation model
(Correctness, special cases, ...)

• Presentation and discussion of results
(What should be shown and how? ...)


