Technische Universiteit

Facility Logistics Management

Ivo Adan

Uechnische Universiteit

Fundamental relations: Little's law

- $E(L)$ is the mean number in the system
- $\mathrm{E}(S)$ is the mean time spent in the system
- λ is the arrival rate (or departure rate or throughput)

- Little’s law

$$
\mathrm{E}(L)=\lambda \mathrm{E}(S) \quad \text { or } \quad \lambda=\frac{\mathrm{E}(L)}{\mathrm{E}(S)}
$$

- According to Little's law: Same throughput λ can be achieved with
- Large number in system $E(L)$ and long mean time in system $E(S)$
- Small number in system $E(L)$ and short mean time in system $E(S)$
- Question: What causes the difference?
- Answer: Variability!

U $\begin{aligned} & \text { Technische Universiteit } \\ & \text { Eindhoven } \\ & \text { University of Technology }\end{aligned}$

Fundamental relations: PASTA Property of Poisson arrivals

- Poisson arrivals with rate λ

- PASTA Property: Poisson Arrivals See Time Averages

Fraction of arrivals that see the system in state $A=$ Fraction of time the system is in state A

- Example: Q^{a} is number in queue on arrival, Q is number in queue at arbitrary point in time

$$
\begin{aligned}
\mathrm{P}\left(Q^{a}=k\right) & =\mathrm{P}(Q=k), \quad k=0,1,2, \ldots \\
\mathrm{E}\left(Q^{a}\right)=\sum_{k=0}^{\infty} k \mathrm{P}\left(Q^{a}=k\right) & =\sum_{k=0}^{\infty} k \mathrm{P}(Q=k)=\mathrm{E}(Q)
\end{aligned}
$$

Single Exponential server

- Poisson arrivals with rate λ and single server with Exponential service times with rate μ
- Stability: $\rho=\lambda / \mu<1$
- p_{k} is long-run probability (or fraction of time) of finding k jobs in the system
- p_{k} is Geometric:

$$
p_{k}=(1-\rho) \rho^{k}, \quad k=0,1, \ldots
$$

- Mean performance

$$
\begin{aligned}
\mathrm{E}(L) & =\sum_{k=0}^{\infty} k p_{k}=\frac{\rho}{1-\rho} \\
\mathrm{E}(S) & =\mathrm{E}(L) / \lambda=\frac{1}{1-\rho} \frac{1}{\mu} \\
\mathrm{E}(Q) & =\sum_{k=1}^{\infty}(k-1) p_{k}=\frac{\rho^{2}}{1-\rho} \\
\mathrm{E}(W) & =\mathrm{E}(Q) / \lambda=\frac{\rho}{1-\rho} \frac{1}{\mu}
\end{aligned}
$$

Single Exponential server

- Poisson arrivals with rate λ and single server with Exponential service times with rate μ
- Stability: $\rho=\lambda / \mu<1$
- Mean performance through PASTA and Little:

$$
\mathrm{E}(S)=\mathrm{E}\left(L^{a}\right) \frac{1}{\mu}+\frac{1}{\mu}
$$

where L^{a} is number on arrival

- PASTA: $\mathrm{E}\left(L^{a}\right)=\mathrm{E}(L)$

$$
E(S)=E(L) \frac{1}{\mu}+\frac{1}{\mu}
$$

- Little's law: $\mathrm{E}(L)=\lambda E(S)$

$$
\mathrm{E}(S)=\mathrm{E}(S) \rho+\frac{1}{\mu}
$$

so

$$
\mathrm{E}(S)=\frac{1}{1-\rho} \frac{1}{\mu}
$$

- $\begin{aligned} & \text { Technische Universiteit } \\ & \text { Eindhoven } \\ & \text { University of Technology }\end{aligned}$

Example: Manual order picking station

- Customer orders arrive at an order picker according to a Poisson stream with rate $\lambda=10$ orders per hour
- It takes the order picker an Exponential time to collect all items for an order
- Mean pick time is 5 minutes, so pick rate is $\mu=12$ orders per hour
- Question: What is the utilization of the picker?
- Answer: $\rho=\frac{\lambda}{\mu}=\frac{10}{12}=\frac{5}{6}$

TU/e

Example: Manual order picking station

- Customer orders arrive at an order picker according to a Poisson stream with rate $\lambda=10$ orders per hour
- It takes the order picker an Exponential time to collect all items for an order
- Mean pick time is 5 minutes, so pick rate is $\mu=12$ orders per hour
- Question: What is the probability that there are at least 2 orders at the pick station?
- Answer:

$$
p_{n}=(1-\rho) \rho^{n}
$$

so the probability of at least 2 orders at the pick station is

$$
p_{2}+p_{3}+\cdots=1-p_{0}-p_{1}=1-(1-\rho)-(1-\rho) \rho=\rho^{2}=\frac{25}{36}
$$

- $\begin{aligned} & \text { Technische Universiteit } \\ & \text { Eindhoven } \\ & \text { University of Technology }\end{aligned}$

Example: Manual order picking station

- Customer orders arrive at an order picker according to a Poisson stream with rate $\lambda=10$ orders per hour
- It takes the order picker an Exponential time to collect all items for an order
- Mean pick time is 5 minutes, so pick rate is $\mu=12$ orders per hour
- Question: What is the mean number of orders at the pick station and what is the mean flow time?
- Answer:

$$
\mathrm{E}(L)=\frac{\rho}{1-\rho}=5, \quad \mathrm{E}(S)=\frac{1}{1-\rho} \frac{1}{\mu}=\frac{1}{2}
$$

C $\begin{aligned} & \text { Technische Universiteit } \\ & \text { Eindhoven } \\ & \text { University of Technology }\end{aligned}$

Number in system over time

Single Exponential server, $\lambda=1.0,1 / \mu=0.5, \rho=0.5$

TU/e
Eindhoven
University of Technology

Number in system over time

Single Exponential server, $\lambda=1.0,1 / \mu=0.9, \rho=0.9$

Q

Number in system over time

Single Exponential server, $\lambda=1.0,1 / \mu=0.95, \rho=0.95$

Cechnische Universiteit

Single Exponential server

- Poisson arrivals with rate λ
- Single server with Exponential service times B, mean $\mathrm{E}(B)=\frac{1}{\mu}$
- Stability: $\rho=\lambda \mathrm{E}(B)<1$
- Mean waiting time

$$
\mathrm{E}(W)=\frac{\rho}{1-\rho} \mathrm{E}(B)
$$

- $\begin{aligned} & \text { Technische Universiteit } \\ & \text { Eindhoven } \\ & \text { University of Technology }\end{aligned}$

Single General server

- Poisson arrivals with rate λ
- Single server with General service times B, density $f_{B}(x)$, mean $E(B)$, variance $\sigma^{2}(B)$
- Stability: $\rho=\lambda \mathrm{E}(B)<1$
- Mean waiting time

$$
\mathrm{E}(W)=\mathrm{E}\left(Q^{a}\right) \mathrm{E}(B)+\rho \mathrm{E}(R)
$$

where Q^{a} is number in queue on arrival and R is residual service time

- PASTA: $\mathrm{E}\left(Q^{a}\right)=\mathrm{E}(Q)$

$$
\mathrm{E}(W)=\mathrm{E}(Q) \mathrm{E}(B)+\rho \mathrm{E}(R)
$$

-Little's law: $\mathrm{E}(Q)=\lambda E(W)$

$$
\mathrm{E}(W)=\frac{\rho}{1-\rho} \mathrm{E}(R)
$$

- Question: What is $\mathrm{E}(R)$?
- $\begin{aligned} & \text { Technische Universiteit } \\ & \text { Eindhoven } \\ & \text { University of Technology }\end{aligned}$

Mean residual service time

- X is randomly selected service time

$$
\mathrm{P}(x \leq X \leq x+d x)=f_{X}(x) d x=C x f_{B}(x) d x
$$

- C is normalizing constant

$$
\begin{gathered}
C=\frac{1}{\int_{0}^{\infty} x f_{B}(x) d x}=\frac{1}{\mathrm{E}(B)} \\
f_{X}(x)=\frac{x f_{B}(x)}{\mathrm{E}(B)}, \quad \mathrm{E}(X)=\int_{0}^{\infty} x f_{X}(x) d x=\frac{1}{\mathrm{E}(B)} \int_{0}^{\infty} x^{2} f_{B}(x) d x=\frac{\mathrm{E}\left(B^{2}\right)}{\mathrm{E}(B)}
\end{gathered}
$$

- Conclusion

$$
\mathrm{E}(R)=\frac{1}{2} \mathrm{E}(X)=\frac{\mathrm{E}\left(B^{2}\right)}{2 \mathrm{E}(B)}=\frac{1}{2}\left(1+c_{B}^{2}\right) \mathrm{E}(B)
$$

- c_{B} is coefficient of variation of B

$$
c_{B}=\frac{\sigma(B)}{E(B)}
$$

- $\begin{aligned} & \text { Technische Universiteit } \\ & \text { Eindhoven } \\ & \text { University of Technology }\end{aligned}$

Single General server

- Poisson arrivals with rate λ
- Single server with General service times B, mean $\mathrm{E}(B)$, variance $\sigma^{2}(B), \mathrm{cv} c_{B}=\sigma(B) / E(B)$
- Stability: $\rho=\lambda \mathrm{E}(B)<1$
- Mean waiting time

$$
\mathrm{E}(W)=\frac{\rho}{1-\rho} \mathrm{E}(R)=\frac{1}{2}\left(1+c_{B}^{2}\right) \frac{\rho}{1-\rho} \mathrm{E}(B)
$$

U $\begin{aligned} & \text { Technische Universiteit } \\ & \text { Eindhoven } \\ & \text { University of Technology }\end{aligned}$

Single General server with General arrivals

- General arrivals with inter-arrival times A, mean $\mathrm{E}(A)$, variance $\sigma^{2}(A), \mathrm{cv} c_{A}=\sigma(A) / E(A)$
- Single server with General service times B, mean $\mathrm{E}(B)$, variance $\sigma^{2}(B), \mathrm{cv} c_{B}=\sigma(B) / E(B)$
- Stability: $\rho=\mathrm{E}(B) / \mathrm{E}(A)<1$
- Mean waiting time

$$
\mathrm{E}(W) \approx \frac{1}{2}\left(c_{A}^{2}+c_{B}^{2}\right) \frac{\rho}{1-\rho} \mathrm{E}(B)
$$

- Mean waiting time $E(W)$ separated into three terms $V \times U \times T$
- Dimensionless Variability term $\frac{1}{2}\left(c_{A}^{2}+c_{B}^{2}\right)$
- Dimensionless Utilization term $\frac{\rho}{1-\rho}$
- Mean service Time term $E(B)$
- $\begin{aligned} & \text { Technische Universiteit } \\ & \text { Eindhoven } \\ & \text { University of Technology }\end{aligned}$

Single General server with General arrivals: Observations

$$
\mathrm{E}(W) \approx \frac{1}{2}\left(c_{A}^{2}+c_{B}^{2}\right) \frac{\rho}{1-\rho} \mathrm{E}(B)
$$

- Poisson arrivals

Approximation is exact for Poisson arrivals

- Insensitivity

Mean waiting time only depends on mean and standard deviation of inter-arrival times and process times

- Heavy load

As the utilization ρ tends to 1 , then:

- Mean waiting time $\mathrm{E}(W)$ tends to ∞
- Relative error of approximation tends to 0
- Distribution of waiting time converges to Exponential

So when the system operates close to $\rho=1$, the waiting times are long and Exponential

TU/e

Single General server with General arrivals

Mean waiting time $E(B)$ as function of utilization ρ for $c_{A}=1$ and $c_{B}=0,1,2$

Multi Exponential servers

- Poisson arrivals with rate λ
- m servers with Exponential service times with rate μ
- Stability: $\rho=\lambda /(m \mu)<1$ where ρ is utilization of server
- p_{i} is long-run probability (or fraction of time) of finding i jobs in the system
- Flow diagram

- Balance equations: Flow from state i to $i-1=$ Flow from state $i-1$ to i
- Balance equations:

$$
\begin{array}{rll}
p_{i} i \mu & =p_{i-1} \lambda & i \leq m \\
p_{i} m \mu & =p_{i-1} \lambda & i>m
\end{array}
$$

? $\begin{aligned} & \text { Technische Universiteit } \\ & \text { Eindhoven } \\ & \text { University of Technology }\end{aligned}$

Multi Exponential servers

- Balance equations: $p_{i} i \mu=p_{i-1} \lambda \quad i \leq m$

$$
p_{i}=p_{i-1} \frac{\lambda}{i \mu}=p_{i-2} \frac{1}{i(i-1)}\left(\frac{\lambda}{\mu}\right)^{2}=\cdots=p_{0} \frac{1}{i!}\left(\frac{\lambda}{\mu}\right)^{i}=p_{0} \frac{1}{i!}(m \rho)^{i}
$$

- Balance equations: $p_{i} m \mu=p_{i-1} \lambda \quad i>m$

$$
p_{i}=p_{i-1} \frac{\lambda}{m \mu}=p_{i-2}\left(\frac{\lambda}{m \mu}\right)^{2}=\cdots=p_{m}\left(\frac{\lambda}{m \mu}\right)^{i-m}=p_{m} \rho^{i-m}=p_{0} \frac{1}{m!}(m \rho)^{m} \rho^{i-m}
$$

- p_{0} is probability that system is empty and follows from normalization $p_{0}+p_{1}+\cdots=1$

$$
\frac{1}{p_{0}}=\sum_{i=0}^{m-1} \frac{(m \rho)^{i}}{i!}+\frac{(m \rho)^{m}}{m!} \frac{1}{1-\rho}
$$

- Π_{W} is probability that all servers are busy (or the probability of waiting on arrival)
${ }_{\text {Wednesday March } 31} \Pi_{W}=p_{m}+p_{m+1}+\cdots=\frac{(m \rho)^{m}}{m!}\left((1-\rho) \sum_{i=0}^{m-1} \frac{(m \rho)^{i}}{i!}+\frac{(m \rho)^{m}}{m!}\right)^{-1} \approx \rho^{\sqrt{2(m+1)}-1}$

Multi Exponential servers

- Poisson arrivals with rate λ
- m servers with Exponential service times, mean $\mathrm{E}(B)=\frac{1}{\mu}$
- Stability: $\rho=\lambda \mathrm{E}(B) / m<1$
- Mean waiting time

$$
\mathrm{E}(W)=\mathrm{E}(Q) \frac{\mathrm{E}(B)}{m}+\Pi_{W} \frac{\mathrm{E}(B)}{m}
$$

-Little's law: $\mathrm{E}(Q)=\lambda \mathrm{E}(W)$

$$
\mathrm{E}(W)=\mathrm{E}(W) \rho+\Pi_{W} \frac{\mathrm{E}(B)}{m}
$$

so

$$
\mathrm{E}(W)=\frac{\Pi_{W}}{1-\rho} \frac{\mathrm{E}(B)}{m}
$$

TU/e

Multi Exponential servers

- Poisson arrivals with rate λ
- m servers with Exponential service times, mean $\mathrm{E}(B)=\frac{1}{\mu}$
- Stability: $\rho=\lambda \mathrm{E}(B) / m<1$
- Mean waiting time

$$
\mathrm{E}(W)=\frac{\Pi_{W}}{1-\rho} \frac{\mathrm{E}(B)}{m}
$$

Multi General servers

- Poisson arrivals with rate λ
- m servers with General service times B, mean $\mathrm{E}(B)$, variance $\sigma^{2}(B), \mathrm{cv} c_{B}=\sigma(B) / \mathrm{E}(B)$
- Stability: $\rho=\lambda \mathrm{E}(B) / m<1$
- Mean waiting time

$$
\mathrm{E}(W) \approx \frac{\Pi_{W}}{1-\rho} \frac{\mathrm{E}(R)}{m}=\frac{1}{2}\left(1+c_{B}^{2}\right) \frac{\Pi_{W}}{1-\rho} \frac{\mathrm{E}(B)}{m}
$$

- Π_{W} is probability of waiting in corresponding exponential system
- Π_{W} is fairly insensitive to distribution of service time
- Corresponding means with same mean service times

Multi General servers with General arrivals

- General arrivals with inter-arrival times A, mean $E(A)$, variance $\sigma^{2}(A), c v c_{A}=\sigma(A) / E(A)$
- m servers with General service times B, mean $\mathrm{E}(B)$, variance $\sigma^{2}(B), \mathrm{cv} c_{B}=\sigma(B) / \mathrm{E}(B)$
- Stability: $\rho=\lambda \mathrm{E}(B) / m<1$
- Mean waiting time

$$
\mathrm{E}(W) \approx \frac{1}{2}\left(c_{A}^{2}+c_{B}^{2}\right) \frac{\Pi_{W}}{1-\rho} \frac{\mathrm{E}(B)}{m}
$$

- Mean waiting time $\mathrm{E}(W)$ separated into three terms $V \times U \times T$
- Dimensionless Variability term $\frac{1}{2}\left(c_{A}^{2}+c_{B}^{2}\right)$
- Dimensionless Utilization term $\frac{\Pi_{w}}{1-\rho}$
- Mean service Time term $\frac{\mathrm{E}(B)}{m}$

U $\begin{aligned} & \text { Technische Universiteit } \\ & \text { Eindhoven } \\ & \text { University of Technology }\end{aligned}$

Departure flow variability

- General arrivals with inter-arrival times A, rate $\lambda_{A}=1 / E(A)$, coefficient of variation c_{A}
- m servers with General service times B, mean $E(B)$, coefficient of variation c_{B}
- Departures with inter-departure times D, rate $\lambda_{D}=1 / E(D)$, coefficient of variation c_{D}
$\mathrm{E}(B), c_{B}$

- Question: What is relation between rate and variability of arrival flow and departure flow?
- $\begin{aligned} & \text { Technische Universiteit } \\ & \text { Eindhoven } \\ & \text { University of Technology }\end{aligned}$

Departure flow variability

- Conservation of flow: $\lambda_{D}=\lambda_{A}$
- Variability in departures depends on variability in arrivals and process times
- Relative contribution of variability in arrivals and process times depends on the utilization of servers

$$
\rho=\frac{\lambda_{A} \mathrm{E}(B)}{m}
$$

- Single server $(m=1)$

$$
c_{D}^{2} \approx\left(1-\rho^{2}\right) c_{A}^{2}+\rho^{2} c_{B}^{2}
$$

- Multi servers $(m>1)$

$$
c_{D}^{2} \approx 1+\left(1-\rho^{2}\right)\left(c_{A}^{2}-1\right)+\frac{\rho^{2}}{\sqrt{m}}\left(c_{B}^{2}-1\right)
$$

- $\begin{aligned} & \text { Technische Universiteit } \\ & \text { Eindhoven } \\ & \text { University of Technology }\end{aligned}$

Departure flow variability

- Successive times between departures are typically not independent
- Assumption of independence is usually a reasonable approximation
- If
- Arrivals are Poisson ($c_{A}=1$)
- Service times are Exponential $\left(c_{B}=1\right)$
then
- Departures are also Poisson ($c_{D}=1$)

TU/e

Departure flow variability

$$
c_{D}^{2} \approx 1+\left(1-\rho^{2}\right)\left(c_{A}^{2}-1\right)+\frac{\rho^{2}}{\sqrt{m}}\left(c_{B}^{2}-1\right)
$$

- Question: Does the approximation for c_{D} make sense?
- If $\rho \approx 1$ and $m=1$, then server nearly always busy, so

$$
c_{D} \approx c_{B}
$$

- If $\rho \approx 0$, then $\mathrm{E}(B)$ is very small compared to $\mathrm{E}(A)$, so

$$
c_{D} \approx c_{A}
$$

- If $c_{A}=c_{B}=1$, then $c_{D}=1$ (as it should)

