Technische Universiteit

## Facility Logistics Management

Ivo Adan


Uechnische Universiteit

## Exponential Queueing Networks: Open Jackson Networks

- Stations $1, \ldots, M$
- Station $m$ has $c_{m}$ parallel identical servers
- Jobs arrive according to Poisson stream with rate $\lambda$
- Arriving job joins station $m$ with probability $\gamma_{m}$
- Service times in station $m$ are Exponential with rate $\mu_{m}$
- Service is in order of arrival
- Routing: Job moves from station $m$ to $n$ with probability $p_{m n}$ and leaves system with probability $p_{m 0}$

TU/e

## Exponential Queueing Networks: Open Jackson Networks



TU/e

## Exponential Queueing Networks: Open Jackson Networks

- $\lambda_{m}$ is total arrival rate to station $m$

$$
\lambda_{m}=\gamma_{m} \lambda+\sum_{n=1}^{M} \lambda_{n} p_{n m}, \quad m=1, \ldots, M
$$

- Stability

$$
\rho_{m}=\frac{\lambda_{m}}{c_{m} \mu_{m}}<1 \quad m=1, \ldots, M
$$

- Bottleneck station b

$$
\rho_{b}=\max _{1 \leq m \leq M} \rho_{m}
$$

- $\begin{aligned} & \text { Technische Universiteit } \\ & \text { Eindhoven } \\ & \text { University of Technology }\end{aligned}$


## Exponential Single Server Network: Open Jackson Networks

- Network states $\underline{k}=\left(k_{1}, \ldots, k_{M}\right)$ where $k_{m}$ is number of jobs in station $m$
- State probabilities $p\left(k_{1}, k_{2}, \ldots, k_{M}\right)$ satisfy balance equations ( $c_{m}=1$ )
$p(\underline{k})\left(\lambda+\sum_{m=1}^{M} \mu_{m} \epsilon\left(k_{m}\right)\right)=\sum_{m=1}^{M} p\left(\underline{k}+\underline{e}_{m}\right) \mu_{m} p_{m 0}+\sum_{n=1}^{M} \sum_{m=1}^{M} p\left(\underline{k}+\underline{e}_{n}-\underline{e}_{m}\right) \mu_{n} p_{n m} \epsilon\left(k_{m}\right)+\sum_{m=1}^{M} p\left(\underline{k}-\underline{e}_{m}\right) \lambda \gamma_{m} \epsilon\left(k_{m}\right)$
where $\underline{e}_{m}=(0, \ldots, 1, \ldots, 0)$ with 1 at place $m$ and $\epsilon(k)= \begin{cases}1 & \text { if } k>0 \\ 0 & \text { else }\end{cases}$
- State probabilities $p\left(k_{1}, k_{2}, \ldots, k_{M}\right)$ have product form

$$
p(\underline{k})=p_{1}\left(k_{1}\right) p_{2}\left(k_{2}\right) \cdots p_{M}\left(k_{M}\right)
$$

where

$$
p_{m}\left(k_{m}\right)=\left(1-\rho_{m}\right) \rho_{m}^{k_{m}} \quad k_{m}=0,1, \ldots
$$

and $\rho_{m}=\lambda_{m} / \mu_{m}$

- Jackson's miracle: This is just the product of $M / M / 1$ solutions!

U $\begin{aligned} & \text { Technische Universiteit } \\ & \text { Eindhoven } \\ & \text { University of Technology }\end{aligned}$

## Exponential Single Server Network: Open Jackson Networks

- Queue lengths at stations are independent (when you take a snapshot)!
- Inflow to station $i$ is in general not Poisson! But you can do as if
- Example:


$$
\mu=1 / \epsilon, p=1-\epsilon(\text { so } \mu(1-p)=1), \lambda \ll 1
$$

- Arrival pattern
$\qquad$
- So not Poisson!
- Question: What is the solution for an exponential multi-server network?

Answer: This is the product of $M / M / c_{m}$ solutions!

## Exponential open job shops: Open Jackson Networks

- Queue lengths at workstations are independent (if you take a snapshot)!
- Inflow to workstation $m$ is in general not Poisson! But you can "do as if"
- Infinite server station $c_{m}=\infty$

$$
p_{m}\left(k_{m}\right)=e^{-\rho_{m}} \frac{\rho_{m}^{k_{m}}}{k_{m}!} \quad \text { (Poisson distribution) }
$$

where $\rho_{m}=\lambda_{m} / \mu_{m}$

- Distribution for $c_{m}=\infty$ also valid for general service time distribution!
- Infinite server stations useful to describe transportation delay
- Product form result also valid for fixed route $C_{1}, C_{2}, \ldots, C_{n}$ in which case

$$
\lambda_{m}=\lambda \sum_{i=1}^{n} \mathbf{1}\left[C_{i}=m\right]
$$

where $\mathbf{1}\left[C_{i}=m\right]=1$ if $C_{i}=m$ and 0 otherwise

TU/e

## Exponential open job shops: Example



- $M=2$ workstations
- $c_{1}=c_{2}=1$ (single server network)
- Arriving jobs join workstation $1\left(\gamma_{1}=1\right)$
- Routing: $p_{12}=1-p_{10}=\frac{1}{2}, p_{21}=1-p_{20}=\frac{2}{3}$
- Question: What is mean time spent in system?
- Answer: $\lambda_{1}=\frac{3}{2} \lambda, \lambda_{2}=\frac{3}{4} \lambda$ (note: $\frac{\lambda_{1}}{\lambda}=\frac{3}{2}$ is mean number of visits of a job to station 1 )
- Stability: $\lambda_{1}<\mu_{1}, \lambda_{2}<\mu_{2}$, so $\lambda<\min \left\{\frac{2}{3} \mu_{1}, \frac{4}{3} \mu_{2}\right\}$
- $E\left(S_{1}\right)=\frac{1}{\mu_{1}-\lambda_{1}}, E\left(S_{2}\right)=\frac{1}{\mu_{2}-\lambda_{2}}, E(S)=\frac{3}{2} E\left(S_{1}\right)+\frac{3}{4} E\left(S_{2}\right)$

Uechnische Universiteit

## Exponential open job shops: Example



- $M=2$ workstations
- $c_{1}=c_{2}=1$ (single server network)
- Arriving jobs join workstation $1\left(\gamma_{1}=1\right)$
- Routing: $p_{12}=1-p_{10}=\frac{1}{2}, p_{21}=1-p_{20}=\frac{2}{3}$
- Question: What is mean time spent in system in case of fixed routing: $1,2,1$ ?
- Answer: $\lambda_{1}=2 \lambda, \lambda_{2}=\lambda$
- Stability: $\lambda_{1}<\mu_{1}, \lambda_{2}<\mu_{2}$, so $\lambda<\min \left\{\frac{1}{2} \mu_{1}, \mu_{2}\right\}$
- $E\left(S_{1}\right)=\frac{1}{\mu_{1}-\lambda_{1}}, E\left(S_{2}\right)=\frac{1}{\mu_{2}-\lambda_{2}}, E(S)=2 E\left(S_{1}\right)+E\left(S_{2}\right)$

Uechnische Universiteit

## Exponential open job shops: Example



- $M=2$ workstations
- $c_{1}=c_{2}=1$ (single server network)
- Arriving jobs join workstation $1\left(\gamma_{1}=1\right)$
- Routing: $p_{12}=1-p_{10}=\frac{1}{2}, p_{21}=1-p_{20}=\frac{2}{3}$
- Question: What is mean time spent in system in case of transportation delays $T$ between station 1 and 2?
- Answer: Mean number of times a job transported from station 1 to 2 is $\frac{3}{4}$, so add $\frac{3}{4} T$ to mean flow time $E(S)$

U $\begin{aligned} & \text { Technische Universiteit } \\ & \text { Eindhoven } \\ & \text { University of Technology }\end{aligned}$
General open job shops

- Stations $1, \ldots, M$
- Station $m$ has $c_{m}$ parallel identical servers
- Jobs arrive according to general stream with general inter-arrival times $A$, with with rate $\lambda=1 / E(A)$
- Arriving job joins station $m$ with probability $\gamma_{m}$
- Service times in station $m$ are General with mean $E\left(B_{m}\right)$ and coefficient of variation $c_{B_{m}}$
- Service is in order of arrival
- Routing: Job moves from station $m$ to $n$ with probability $p_{m n}$ and leaves system with probability $p_{m 0}$

TU/e

## General open job shops

- Lesson from Jackson networks: Each station can be analyzed in isolation with appropriate arrival process
- Approach for "large randomly routed networks":
- Arrival process at each station is "random", thus approximately Poisson with rate $\lambda_{m}$

$$
\lambda_{m}=\gamma_{m} \lambda+\sum_{n=1}^{M} \lambda_{j} p_{n m}, \quad m=1, \ldots, M
$$

- Model each workstation $m$ as $M / G / c$ with Poisson arrival rate $\lambda_{m}, c=c_{m}$ and $B=B_{m}$

$$
\mathrm{E}\left(S_{m}\right) \approx \frac{1}{2}\left(1+c_{B_{m}}^{2}\right) \frac{\Pi_{W_{m}}}{1-\rho_{m}} \frac{\mathrm{E}\left(B_{m}\right)}{c_{m}}+\mathrm{E}\left(B_{m}\right)
$$

where $\Pi_{W_{m}}$ is probability of waiting in corresponding $M / M / c$ with $\lambda=\lambda_{m}, \mu_{m}=1 / E\left(B_{m}\right)$ and $c=c_{m}$

