Technische Universiteit

Facility Logistics Management

Ivo Adan

- $\begin{aligned} & \text { Technische Universiteit } \\ & \text { Eindhoven } \\ & \text { University of Technology }\end{aligned}$

Exponential closed networks: Closed Jackson Networks

- Workstations $1, \ldots, M$
- Workstation m has c_{m} parallel identical machines
- N circulating jobs (N is the population size)
- Service times in workstation m are Exponential with rate μ_{m}
- Service is in order of arrival
- Routing: job moves from workstation m to n with probability $p_{m n}$

TU/e

Exponential closed networks: Closed Jackson Networks

? $\begin{aligned} & \text { Technische Universiteit } \\ & \text { Eindhoven } \\ & \text { University of Technology }\end{aligned}$

Example: Robotic barn

- Design issues
- Number of robots
- Number and location of feeders, troughs, drinking places, cubicles

Cechnische Universiteit

Example: Robotic barn

- Closed network with N circulating cows and workstations:

1. Milking robot
2. Concentrate feeder
3. Forage lane
4. Water trough
5. Cubicle
6. Walking

TU/e

Example: Robotic barn

TU/e
Example: Zone-Picking

Uechnische Universiteit

Example: Zone-Picking

- Key features
- Man-to-goods solution
- Work-load control at multiple levels
- Limited buffer space at zones
- Recirculation (on main and local loops)
- Design issues
- Layout of the network
- Number and size of zones
- Location of items
- Number of pickers
- Required WIP level

Cechnische Universiteit

Example: Single Zone

TU/e

Example: Single Zone

- Closed network with N circulating totes and workstations:

1. System entrance/exit
2. Conveyors
3. Picking zones

TU/e e^{5}

Example: Single Zone

Cechnische Universiteit

Example: KIVA system

- Key features
- High throughput capability, flexibility and scalability
- Design issues
- Number and routing of robots
- Storage location of racks
- Number and location of pick locations

C $\begin{aligned} & \text { Technische Universiteit } \\ & \text { Eindhoven } \\ & \text { University of Technology }\end{aligned}$

Example: KIVA system

- Closed queueing network model with N circulating robots and workstations:

1. Picking station
2. Storage/retrieval

TU/e

Example: KIVA system

TU/e

Example: Container terminal

- Design issues
- Number of quay cranes
- Number of straddle carriers

C $\begin{aligned} & \text { Technische Universiteit } \\ & \text { Eindhoven } \\ & \text { University of Technology }\end{aligned}$

Example: Container terminal

- Closed queueing network model with N circulating straddle carriers and workstations:

1. Quay cranes
2. Gantry cranes
3. Transportation

TU/e e^{5}

Example: Container terminal

TU/e

Example: Container terminal

TU/e

Exponential closed Single server network: Closed Jackson Networks

- Network states $\underline{k}=\left(k_{1}, \ldots, k_{M}\right)$ where k_{m} is number in station m : Note $\sum_{m=1}^{M} k_{m}=N$ so $\binom{N+M-1}{M-1}$ states
- State probabilities $p\left(k_{1}, k_{2}, \ldots, k_{M}\right)$ satisfy balance equations ($c_{m}=1$)

$$
p(\underline{k}) \sum_{m=1}^{M} \mu_{m} \epsilon\left(k_{m}\right)=\sum_{n=1}^{M} \sum_{m=1}^{M} p\left(\underline{k}+\underline{e}_{n}-\underline{e}_{m}\right) \mu_{n} p_{n m} \epsilon\left(k_{m}\right)
$$

where $\underline{e}_{m}=(0, \ldots, 1, \ldots, 0)$ with 1 at place m and $\epsilon(k)= \begin{cases}1 & \text { if } k>0 \\ 0 & \text { else }\end{cases}$

- State probabilities $p\left(k_{1}, k_{2}, \ldots, k_{M}\right)$ have product form

$$
p(\underline{k})=C p_{1}\left(k_{1}\right) p_{2}\left(k_{2}\right) \cdots p_{M}\left(k_{M}\right)
$$

where C is normalizing constant and

$$
p_{m}\left(k_{m}\right)=\left(\frac{v_{m}}{\mu_{m}}\right)^{k_{m}}, \quad k_{m}=0,1, \ldots
$$

with v_{m} the "arrival rate" to workstation m : Again the product of $M / M / 1$ solutions!

Uechnische Universiteit

Exponential closed Single server network: Visiting frequency

- v_{m} is the relative arrival rate or visiting frequency to m

$$
v_{m}=\sum_{n=1}^{M} v_{n} p_{n m}, \quad m=1, \ldots, M
$$

- Equations determine v_{m} up to a multiplicative constant
- Set $v_{1}=1$: Then v_{m} is the expected number of visits to m in between two successive visits to station 1
- Product form result also valid for fixed routing
- Although $p(\underline{k})$ is again a product, the queues at stations are dependent!

Exponential closed Single server network: Normalizing constant

- Define

$$
C(m, n)=\sum_{\substack{k_{1}, \ldots, k_{m} \geq 0 \\ \sum_{i=1}^{m} k_{i}=n}}\left(\frac{v_{1}}{\mu_{1}}\right)^{k_{1}}\left(\frac{v_{2}}{\mu_{2}}\right)^{k_{2}} \cdots\left(\frac{v_{m}}{\mu_{m}}\right)^{k_{m}}
$$

- Interpretation: $C(m, n)$ is sum of products in network with stations $1, \ldots, m$ and population n
- Normalizing constant $C=\frac{1}{C(M, N)}$
- Question: How to calculate $C(M, N)$?
- Answer: Buzen's algorithm

Q

Exponential closed Single server network: Normalizing constant

- Buzen's algorithm:

$$
C(m, n)=C(m-1, n)+\frac{v_{m}}{\mu_{m}} C(m, n-1)
$$

with initial conditions

$$
C(0, n)=0, \quad n=1, \ldots, N, \quad C(m, 0)=1, \quad m=1, \ldots, M
$$

$m \quad M$

? $\begin{aligned} & \text { Technische Universiteit } \\ & \text { Eindhoven } \\ & \text { University of Technology }\end{aligned}$

Exponential closed Single server network: Mean values

- Question: What is the real arrival rate λ_{m} ?
- Answer:

$$
\lambda_{M}=v_{M} \frac{C(M, N-1)}{C(M, N)}
$$

and

$$
\lambda_{m}=\frac{v_{m}}{v_{M}} \lambda_{M}
$$

- Question: What is mean number $E\left(L_{M}\right)$ in station M ?
- Answer:

$$
E\left(L_{M}\right)=\frac{1}{C(M, N)} \sum_{k_{M}=0}^{N} k_{M}\left(\frac{v_{M}}{\mu_{M}}\right)^{k_{M}} C\left(M-1, N-k_{M}\right)
$$

- Question: What is expected cycle time $E(C)$ between two visits to station 1?
- Answer: By Little’s law

$$
E(C)=\frac{N}{\lambda_{1}}
$$

- $\begin{aligned} & \text { Technische Universiteit } \\ & \text { Eindhoven } \\ & \text { University of Technology }\end{aligned}$

Exponential closed Multi server network

- State probabilities $p\left(k_{1}, k_{2}, \ldots, k_{M}\right)$ have product form

$$
p(\underline{k})=C p_{1}\left(k_{1}\right) p_{2}\left(k_{2}\right) \cdots p_{M}\left(k_{M}\right)
$$

where C is normalizing constant and

$$
p_{m}\left(k_{m}\right)=\prod_{k=1}^{k_{m}} \frac{v_{m}}{\mu_{m}(k)}
$$

where $\mu_{m}(k)=\min \left(k, c_{m}\right) \mu_{m}$ and v_{m} visiting frequency to workstation m

- Product of $M / M / c_{m}$ solutions with arrival rate v_{m} and service rate μ_{m} !
- Normalizing constant C can again be calculated via recursion

Cechnische Universiteit

Example: KIVA system

- N circulating robots
- Pick station is Exponential single server with rate μ_{P}
- Storage/Retrieval station is Exponential infinite server with rate $\mu_{S R}$
- Visiting frequency $v_{1}=v_{2}=1$

Q

Example: KIVA system

- State probabilities

$$
p\left(k_{P}, k_{S R}\right)=p\left(N-k_{S R}, k_{S R}\right)=C\left(\frac{1}{\mu_{P}}\right)^{N-k_{S R}} \frac{1}{k_{S R}!}\left(\frac{1}{\mu_{S R}}\right)^{k_{S R}}=\frac{C}{\mu_{P}^{N}} \frac{1}{k_{S R}!}\left(\frac{\mu_{P}}{\mu_{S R}}\right)^{k_{S R}}, \quad k_{S R}=0,1, \ldots, N
$$

- Normalizing constant

$$
\frac{\mu_{P}^{N}}{C}=\sum_{k_{S R}=0}^{N} \frac{1}{k_{S R}!}\left(\frac{\mu_{P}}{\mu_{S R}}\right)^{k_{S R}}
$$

TU/e

Example: KIVA system

- Throughput

$$
\lambda_{S R}=\lambda_{P}=\mu_{P}(1-p(0, N))
$$

U $\begin{aligned} & \text { Technische Universiteit } \\ & \text { Eindhoven } \\ & \text { University of Technology }\end{aligned}$

Exponential closed Single server network: Arrival theorem

- Question: What is the state seen by job moving from one station to another?
- Answer: Number of jumps per time unit that see network in state $\underline{k} \in S(N-1)=\left\{\underline{k} \geq 0 \mid \sum_{i=1}^{M} k_{i}=N-1\right\}$

$$
\sum_{m=1}^{M} p\left(\underline{k}+\underline{e}_{m}\right) \mu_{m}=\frac{1}{C(M, N)} p_{1}\left(k_{1}\right) \cdots p_{M}\left(k_{M}\right) \sum_{m=1}^{M} v_{m}
$$

- Number of all jumps per time unit in network

$$
\sum_{\underline{I} \in S(N-1)} \sum_{m=1}^{M} p\left(\underline{I}+\underline{e}_{m}\right) \mu_{m}=\frac{1}{C(M, N)} \sum_{\underline{I} \in S(N-1)} p_{1}\left(I_{1}\right) \cdots p_{M}\left(I_{M}\right) \sum_{m=1}^{M} v_{m}
$$

- Fraction of jumps per time unit that see network in state $\underline{k} \in S(N-1)$

$$
\frac{\frac{1}{C(M, N)} p_{1}\left(k_{1}\right) \cdots p_{M}\left(k_{M}\right) \sum_{m=1}^{M} v_{m}}{\frac{1}{C(M, N)} \sum_{\underline{l} \in S(N-1)} p_{1}\left(l_{1}\right) \cdots p_{M}\left(I_{M}\right) \sum_{m=1}^{M} v_{m}}=\frac{1}{C(M, N-1)} p_{1}\left(k_{1}\right) \cdots p_{M}\left(k_{M}\right)
$$

which is probability that network with $N-1$ circulating jobs is in state \underline{k}

- $\begin{aligned} & \text { Technische Universiteit } \\ & \text { Eindhoven } \\ & \text { University of Technology }\end{aligned}$

Exponential closed Single server network: Arrival theorem

- Question: What is the state seen by job moving from one station to another?
- Answer: Job moving from one station to another sees network in equilibrium with population $N-1$
- Remarks:
- Also valid for Multi server networks
- Also valid for jobs moving to specific station
- Question: What is the impact of the arrival theorem?
- Answer: Mean Value Analysis
- $\begin{aligned} & \text { Technische Universiteit } \\ & \text { Eindhoven } \\ & \text { University of Technology }\end{aligned}$

Exponential closed Single server network: Mean value analysis

- Define for network with population k

$$
\begin{aligned}
\mathrm{E}\left(S_{m}(k)\right) & =\text { Mean sojourn time in station } m \\
\Lambda_{m}(k) & =\text { Throughput of station } m \\
\mathrm{E}\left(L_{m}(k)\right) & =\text { Mean number in station } m
\end{aligned}
$$

- For population $k=1,2, \ldots, N$

$$
\begin{aligned}
\mathrm{E}\left(S_{m}(k)\right) & =\mathrm{E}\left(L_{m}(k-1)\right) \frac{1}{\mu_{m}}+\frac{1}{\mu_{m}} \quad \text { (Arrival theorem) } \\
\Lambda_{m}(k) & =\frac{k v_{m}}{\sum_{n=1}^{M} v_{n} \mathrm{E}\left(S_{n}(k)\right)} \quad \text { (Little) } \\
\mathrm{E}\left(L_{m}(k)\right) & =\Lambda_{m}(k) \mathrm{E}\left(S_{m}(k)\right) \quad(\text { Little })
\end{aligned}
$$

with initially $E\left(L_{m}(0)\right)=0$

Cechnische Universiteit

Exponential closed Multi server network: Mean value analysis

- For population $k=1,2, \ldots, N$

$$
\begin{aligned}
\mathrm{E}\left(S_{m}(k)\right) & =\Pi_{m}(k-1) \frac{1}{c_{m} \mu_{m}}+\left(\mathrm{E}\left(L_{m}(k-1)\right)-\frac{\Lambda_{m}(k-1)}{\mu_{m}}\right) \frac{1}{c_{m} \mu_{m}}+\frac{1}{\mu_{m}} \\
\Lambda_{m}(k) & =\frac{k v_{m}}{\sum_{n=1}^{M} v_{n} \mathrm{E}\left(S_{n}(k)\right)} \\
\mathrm{E}\left(L_{m}(k)\right) & =\Lambda_{m}(k) \mathrm{E}\left(S_{m}(k)\right)
\end{aligned}
$$

where $\Pi_{m}(k-1)$ is probability that all servers are busy

- $\Pi_{m}(k-1)$ can be approximated by probability of waiting Π_{W} in $M / M / c_{m}$ with $\lambda=\Lambda_{m}(k-1)$ and $\mu=\mu_{m}$
- For $c_{m}=\infty$ (no waiting)

$$
\mathrm{E}\left(S_{m}(k)\right)=\frac{1}{\mu_{m}}
$$

Q

Example: KIVA system

- For population $k=1,2, \ldots, N$

$$
\begin{aligned}
\mathrm{E}\left(S_{P}(k)\right) & =\mathrm{E}\left(L_{P}(k-1)\right) \frac{1}{\mu_{P}}+\frac{1}{\mu_{P}}, \quad \mathrm{E}\left(S_{S R}(k)\right)=\frac{1}{\mu_{S R}} \\
\Lambda_{P}(k) & =\Lambda_{S R}(k)=\frac{k}{\mathrm{E}\left(S_{P}(k)\right)+\frac{1}{\mu_{S R}}} \\
\mathrm{E}\left(L_{P}(k)\right) & =\Lambda_{P}(k) \mathrm{E}\left(S_{P}(k)\right)=k-\mathrm{E}\left(L_{S R}(k)\right)
\end{aligned}
$$

with initially $\mathrm{E}\left(L_{P}(0)\right)=\mathrm{E}\left(L_{S R}(0)\right)=0$

General closed network: Approximate mean value analysis

- Service times is station m are G eneral with mean $\mathrm{E}\left(B_{m}\right), \mathrm{cv} c_{B_{m}}$ and mean residual $\mathrm{E}\left(R_{m}\right)=\frac{1}{2}\left(1+c_{B_{m}}^{2}\right) \mathrm{E}\left(B_{m}\right)$
- For population $k=1,2, \ldots, N$

$$
\begin{aligned}
\mathrm{E}\left(S_{m}(k)\right) & =\Pi_{m}(k-1) \frac{\mathrm{E}\left(R_{m}\right)}{c_{m}}+\left(\mathrm{E}\left(L_{m}(k-1)\right)-\Lambda_{m}(k-1) \mathrm{E}\left(B_{m}\right)\right) \frac{\mathrm{E}\left(B_{m}\right)}{c_{m}}+\mathrm{E}\left(B_{m}\right) \\
\Lambda_{m}(k) & =\frac{k v_{m}}{\sum_{n=1}^{M} v_{n} \mathrm{E}\left(S_{n}(k)\right)} \\
\mathrm{E}\left(L_{m}(k)\right) & =\Lambda_{m}(k) \mathrm{E}\left(S_{m}(k)\right)
\end{aligned}
$$

where $\Pi_{m}(k-1)$ can be approximated by probability of waiting in $M / M / c$

- In single server station

$$
\mathrm{E}\left(S_{m}(k)\right)=\rho_{m}(k-1) \mathrm{E}\left(R_{m}\right)+\left(\mathrm{E}\left(L_{m}(k-1)\right)-\rho_{m}(k-1)\right) \mathrm{E}\left(B_{m}\right)+\mathrm{E}\left(B_{m}\right)
$$

where $\rho_{m}(k-1)=\Lambda_{m}(k-1) \mathrm{E}\left(B_{m}\right)$

- $\begin{aligned} & \text { Technische Universiteit } \\ & \text { Eindhoven } \\ & \text { University of Technology }\end{aligned}$

Example: KIVA system

- General pick times and general storage/retrieval times
- For population $k=1,2, \ldots, N$

$$
\begin{aligned}
\mathrm{E}\left(S_{P}(k)\right) & =\rho_{P}(k-1) \mathrm{E}\left(R_{P}\right)+\left(\mathrm{E}\left(L_{P}(k-1)\right)-\rho_{P}(k-1)\right) \mathrm{E}\left(B_{P}\right)+\mathrm{E}\left(B_{P}\right), \quad \mathrm{E}\left(S_{S R}(k)\right)=\mathrm{E}\left(B_{S R}\right) \\
\Lambda_{P}(k) & =\Lambda_{S R}(k)=\frac{k}{\mathrm{E}\left(S_{P}(k)\right)+\mathrm{E}\left(B_{S R}\right)} \\
\mathrm{E}\left(L_{P}(k)\right) & =\Lambda_{P}(k) \mathrm{E}\left(S_{P}(k)\right)=k-\mathrm{E}\left(L_{S R}(k)\right)
\end{aligned}
$$

with initially $\mathrm{E}\left(L_{P}(0)\right)=\mathrm{E}\left(L_{S R}(0)\right)=0$ and $\rho_{P}(k)=\Lambda_{P}(k) \mathrm{E}\left(B_{P}\right)$

- $\begin{aligned} & \text { Technische Universiteit } \\ & \text { Eindhoven } \\ & \text { University of Technology }\end{aligned}$

General closed network: Example

- Closed system with 4 single server stations and 10 circulating pallets

- Processing characteristics

Station	$\mathrm{E}\left(B_{m}\right)$	$c_{B_{m}}^{2}$
1	1.25	0.25
2	1.25	0.50
3	2.00	0.33
4	1.60	1.00

General closed network: Example

- Mean value analysis: $\Lambda_{1}(10)=0.736$ parts per time unit
- Simulation: $\Lambda_{1}(10)=0.743 \pm 0.003$ parts per time unit
- Mean sojourn times

Station	$\mathrm{E}\left(S_{m}(10)\right)$	
	amva	sim
1	4.417	4.890 ± 0.106
2	5.050	4.760 ± 0.169
3	4.181	3.860 ± 0.068
4	4.086	3.790 ± 0.118

- $\begin{aligned} & \text { Technische Universiteit } \\ & \text { Eindhoven } \\ & \text { University of Technology }\end{aligned}$

Exponential closed Multi-class network

- Workstations $1, \ldots, M$
- Workstation m has c_{m} parallel identical machines
- R job types
- Population vector $\underline{N}=\left(N_{1}, N_{2}, \ldots, N_{R}\right)$ where N_{r} is number of circulating jobs of type r
- Service times in workstation m are Exponential with rate μ_{m} (same for each job type)
- Service is in order of arrival
- Routing of type r jobs: type r job moves from workstation m to n with probability $p_{m n}^{r}$
- $v_{m r}$ is relative visiting frequency to station m of type r jobs

$$
v_{m r}=\sum_{n=1}^{M} v_{n r} p_{n m}^{r}, \quad m=1,2, \ldots, M
$$

TU/e
Exponential closed Multi-class network: Arrival theorem

- Type r job moving from one station to another sees network in equilibrium with population $\underline{N}-\underline{e}_{r}$

Cechnische Universiteit
Exponential closed Multi-class network: Mean value analysis

- Define for network with population \underline{k}

$$
\begin{aligned}
\mathrm{E}\left(S_{m r}(\underline{k})\right) & =\text { Mean sojourn time in work station } m \text { for type } r \text { job } \\
\Lambda_{m r}(\underline{k}) & =\text { Throughput of type } r \text { jobs of station } m \\
\mathrm{E}\left(L_{m r}(\underline{k})\right) & =\text { Mean number of type } r \text { jobs in station } m
\end{aligned}
$$

- For population vectors $\underline{k}=\underline{0}$ to $\underline{k}=\underline{N}$

$$
\begin{aligned}
\mathrm{E}\left(S_{m r}(\underline{k})\right) & =\sum_{s=1}^{r} \mathrm{E}\left(L_{m s}\left(\underline{k}-\underline{e}_{r}\right)\right) \frac{1}{\mu_{m}}+\frac{1}{\mu_{m}} \\
\Lambda_{m r}(\underline{k}) & =\frac{N_{r} v_{m r}}{\sum_{n=1}^{M} v_{n r} \mathrm{E}\left(S_{n r}(\underline{k})\right)} \\
\mathrm{E}\left(L_{m r}(\underline{k})\right) & \left.=\Lambda_{m r} \underline{k}\right) \mathrm{E}\left(S_{m r}(\underline{k})\right)
\end{aligned}
$$

with initially $\mathrm{E}\left(L_{m s}(\mathbb{0})\right)=\underline{0}$

- Number of recursion steps is $\prod_{r=1}^{R} N_{r}$!

Uechnische Universiteit

Exponential closed Multi-class network: Breaking the recursion

- Assume Type r job moving from one station to another sees network in equilibrium with population N
- For population vector \underline{N}

$$
\begin{aligned}
\mathrm{E}\left(S_{m r}(\underline{N})\right) & =\sum_{s=1}^{r} \mathrm{E}\left(L_{m s}(\underline{N})\right) \frac{1}{\mu_{m}}+\frac{1}{\mu_{m}} \\
\Lambda_{m r}(\underline{N}) & =\frac{N_{r} v_{m r}}{\sum_{n=1}^{M} v_{n r} \mathrm{E}\left(S_{n r}(\underline{N})\right)} \\
\mathrm{E}\left(L_{m r}(\underline{N})\right) & \left.=\Lambda_{m r} \underline{N}\right) \mathrm{E}\left(S_{m r}(\underline{N})\right)
\end{aligned}
$$

- Avoid self queueing

$$
\mathrm{E}\left(S_{m r}(\underline{N})\right)=\sum_{s \neq r} E\left(L_{m s}(\underline{N})\right) \frac{1}{\mu_{m}}+\frac{N_{r}-1}{N_{r}} \mathrm{E}\left(L_{m r}(\underline{N})\right) \frac{1}{\mu_{m}}+\frac{1}{\mu_{m}}
$$

Q

Exponential closed Multi-class network: Fixed point equations

- 3MR equations for $3 M R$ unknowns $\mathrm{E}\left(S_{m r}(\underline{N})\right), \Lambda_{m r}(\underline{N})$ and $\mathrm{E}\left(L_{m r}(\underline{N})\right)$

$$
\begin{aligned}
\mathrm{E}\left(S_{m r}(\underline{N})\right) & =\sum_{s \neq r} \mathrm{E}\left(L_{m s}(\underline{N})\right) \frac{1}{\mu_{m}}+\frac{N_{r}-1}{N_{r}} \mathrm{E}\left(L_{m r}(\underline{N})\right) \frac{1}{\mu_{m}}+\frac{1}{\mu_{m}} \\
\Lambda_{m r}(\underline{N}) & =\frac{N_{r} v_{m r}}{\sum_{n=1}^{M} v_{n r} \mathrm{E}\left(S_{n r}(\underline{N})\right)} \\
\mathrm{E}\left(L_{m r}(\underline{N})\right) & =\Lambda_{m r}(\underline{N}) \mathrm{E}\left(S_{m r}(\underline{N})\right)
\end{aligned}
$$

- Solution by successive substitutions

