

Facility Logistics Management

Ivo Adan

Exponential closed networks: Closed Jackson Networks

- Workstations 1, ... , *M*
- Workstation *m* has *c_m* parallel identical machines
- *N* circulating jobs (*N* is the population size)
- Service times in workstation m are Exponential with rate μ_m
- Service is in order of arrival
- Routing: job moves from workstation *m* to *n* with probability *p_{mn}*

Exponential closed networks: Closed Jackson Networks

Example: Robotic barn

- Design issues
 - Number of robots
 - Number and location of feeders, troughs, drinking places, cubicles

4

Example: Robotic barn

- Closed network with *N* circulating cows and workstations:
 - 1. Milking robot
 - 2. Concentrate feeder
 - 3. Forage lane
 - 4. Water trough
 - 5. Cubicle
 - 6. Walking

Example: Robotic barn

Technische Universiteit **Eindhoven** University of Technology ΤU **e**

Example: Zone-Picking

Wednesday March 31

Example: Zone-Picking

- Key features
 - Man-to-goods solution
 - Work-load control at multiple levels
 - Limited buffer space at zones
 - Recirculation (on main and local loops)
- Design issues
 - Layout of the network
 - Number and size of zones
 - Location of items
 - Number of pickers
 - Required WIP level

Example: Single Zone

Example: Single Zone

- Closed network with *N* circulating totes and workstations:
 - 1. System entrance/exit
 - 2. Conveyors
 - 3. Picking zones

Example: Single Zone

Kiva robot

Operating in warehouse

- Key features
 - High throughput capability, flexibility and scalability
- Design issues
 - Number and routing of robots
 - Storage location of racks
 - Number and location of pick locations

- Closed queueing network model with *N* circulating robots and workstations:
 - 1. Picking station
 - 2. Storage/retrieval

- Design issues
 - Number of quay cranes
 - Number of straddle carriers

- Closed queueing network model with *N* circulating straddle carriers and workstations:
 - 1. Quay cranes
 - 2. Gantry cranes
 - 3. Transportation

Exponential closed Single server network: Closed Jackson Networks

- Network states $\underline{k} = (k_1, ..., k_M)$ where k_m is number in station *m*: Note $\sum_{m=1}^M k_m = N$ so $\binom{N+M-1}{M-1}$ states
- State probabilities $p(k_1, k_2, ..., k_M)$ satisfy balance equations ($c_m = 1$)

$$p(\underline{k})\sum_{m=1}^{M}\mu_{m}\epsilon(k_{m}) = \sum_{n=1}^{M}\sum_{m=1}^{M}p(\underline{k}+\underline{e}_{n}-\underline{e}_{m})\mu_{n}p_{nm}\epsilon(k_{m})$$

where $\underline{e}_m = (0, ..., 1, ..., 0)$ with 1 at place *m* and $\epsilon(k) = \begin{cases} 1 & \text{if } k > 0 \\ 0 & \text{else} \end{cases}$

• State probabilities $p(k_1, k_2, ..., k_M)$ have product form

$$p(\underline{k}) = Cp_1(k_1)p_2(k_2)\cdots p_M(k_M)$$

where C is normalizing constant and

$$p_m(k_m) = \left(\frac{v_m}{\mu_m}\right)^{k_m}, \quad k_m = 0, 1, \dots$$

with v_m the "arrival rate" to workstation m: Again the product of M/M/1 solutions!

Wednesday March 31

Exponential closed Single server network: Visiting frequency

• v_m is the relative arrival rate or visiting frequency to m

$$v_m = \sum_{n=1}^M v_n p_{nm}, \quad m = 1, \dots, M$$

- Equations determine v_m up to a multiplicative constant
- Set $v_1 = 1$: Then v_m is the expected number of visits to *m* in between two successive visits to station 1
- Product form result also valid for fixed routing
- Although $p(\underline{k})$ is again a product, the queues at stations are dependent!

Exponential closed Single server network: Normalizing constant

Define

$$C(m, n) = \sum_{\substack{k_1, \dots, k_m \ge 0 \\ \sum_{i=1}^m k_i = n}} \left(\frac{v_1}{\mu_1}\right)^{k_1} \left(\frac{v_2}{\mu_2}\right)^{k_2} \cdots \left(\frac{v_m}{\mu_m}\right)^{k_m}$$

- Interpretation: C(m, n) is sum of products in network with stations 1, ..., m and population n
- Normalizing constant $C = \frac{1}{C(M,N)}$
- **Question:** How to calculate *C*(*M*, *N*)?
- Answer: Buzen's algorithm

Exponential closed Single server network: Normalizing constant

• Buzen's algorithm:

$$C(m, n) = C(m - 1, n) + \frac{v_m}{\mu_m} C(m, n - 1)$$

with initial conditions

$$C(0, n) = 0, \quad n = 1, ..., N, \quad C(m, 0) = 1, \quad m = 1, ..., M$$

$$m \qquad M$$

$$\boxed{\begin{array}{c}1 & 1 & 1 & 1 & 1 & 1 & 1 \\ 0 & & & & \end{array}}$$

Exponential closed Single server network: Mean values

- Question: What is the real arrival rate λ_m ?
- Answer:

$$\lambda_M = v_M \frac{C(M, N-1)}{C(M, N)}$$

and

$$\lambda_m = \frac{v_m}{v_M} \,\lambda_M$$

- **Question:** What is mean number $E(L_M)$ in station *M*?
- Answer:

$$E(L_M) = \frac{1}{C(M, N)} \sum_{k_M=0}^{N} k_M \left(\frac{v_M}{\mu_M}\right)^{k_M} C(M-1, N-k_M)$$

- **Question:** What is expected cycle time *E*(*C*) between two visits to station 1?
- Answer: By Little's law

$$E(C) = \frac{N}{\lambda_1}$$

Exponential closed Multi server network

• State probabilities $p(k_1, k_2, ..., k_M)$ have product form

 $p(\underline{k}) = Cp_1(k_1)p_2(k_2)\cdots p_M(k_M)$

where C is normalizing constant and

$$p_m(k_m) = \prod_{k=1}^{k_m} \frac{v_m}{\mu_m(k)}$$

where $\mu_m(k) = \min(k, c_m)\mu_m$ and v_m visiting frequency to workstation m

- Product of $M/M/c_m$ solutions with arrival rate v_m and service rate μ_m !
- Normalizing constant *C* can again be calculated via recursion

- *N* circulating robots
- Pick station is Exponential single server with rate μ_P
- Storage/Retrieval station is Exponential infinite server with rate μ_{SR}
- Visiting frequency $v_1 = v_2 = 1$

• State probabilities

$$p(k_P, k_{SR}) = p(N - k_{SR}, k_{SR}) = C\left(\frac{1}{\mu_P}\right)^{N - k_{SR}} \frac{1}{k_{SR}!} \left(\frac{1}{\mu_{SR}}\right)^{k_{SR}} = \frac{C}{\mu_P^N} \frac{1}{k_{SR}!} \left(\frac{\mu_P}{\mu_{SR}}\right)^{k_{SR}}, \quad k_{SR} = 0, 1, \dots, N$$

• Normalizing constant

$$\frac{\mu_P^N}{C} = \sum_{k_{SR}=0}^N \frac{1}{k_{SR}!} \left(\frac{\mu_P}{\mu_{SR}}\right)^{k_{SR}}$$

• Throughput

 $\lambda_{SR} = \lambda_P = \mu_P(1 - p(0, N))$

Exponential closed Single server network: Arrival theorem

- Question: What is the state seen by job moving from one station to another?
- Answer: Number of jumps per time unit that see network in state $\underline{k} \in S(N-1) = \{\underline{k} \ge 0 | \sum_{i=1}^{M} k_i = N-1 \}$

$$\sum_{m=1}^{M} p(\underline{k} + \underline{e}_m) \mu_m = \frac{1}{C(M, N)} p_1(k_1) \cdots p_M(k_M) \sum_{m=1}^{M} v_m$$

• Number of all jumps per time unit in network

$$\sum_{\underline{l}\in S(N-1)}\sum_{m=1}^{M}p(\underline{l}+\underline{e}_{m})\mu_{m}=\frac{1}{C(M,N)}\sum_{\underline{l}\in S(N-1)}p_{1}(l_{1})\cdots p_{M}(l_{M})\sum_{m=1}^{M}v_{m},$$

• Fraction of jumps per time unit that see network in state $\underline{k} \in S(N-1)$

$$\frac{\frac{1}{C(M,N)}p_1(k_1)\cdots p_M(k_M)\sum_{m=1}^M v_m}{\frac{1}{C(M,N)}\sum_{l\in S(N-1)}^I p_1(l_1)\cdots p_M(l_M)\sum_{m=1}^M v_m} = \frac{1}{C(M,N-1)}p_1(k_1)\cdots p_M(k_M)$$

which is probability that network with N = 1 circulating jobs is in state <u>k</u>

Wednesday March 31

Exponential closed Single server network: Arrival theorem

- Question: What is the state seen by job moving from one station to another?
- Answer: Job moving from one station to another sees network in equilibrium with population N-1
- Remarks:
 - Also valid for Multi server networks
 - Also valid for jobs moving to specific station
- Question: What is the impact of the arrival theorem?
- Answer: Mean Value Analysis

Exponential closed Single server network: Mean value analysis

• Define for network with population *k*

• For population $k = 1, 2, \dots, N$

$$E(S_m(k)) = E(L_m(k-1))\frac{1}{\mu_m} + \frac{1}{\mu_m} \quad \text{(Arrival theorem)}$$

$$\Lambda_m(k) = \frac{kv_m}{\sum_{n=1}^M v_n E(S_n(k))} \quad \text{(Little)}$$

$$E(L_m(k)) = \Lambda_m(k)E(S_m(k)) \quad \text{(Little)}$$

with initially $E(L_m(0)) = 0$

Exponential closed Multi server network: Mean value analysis

• For population *k* = 1, 2, ..., *N*

$$\begin{split} \mathsf{E}(S_{m}(k)) &= \Pi_{m}(k-1) \frac{1}{c_{m}\mu_{m}} + \left(\mathsf{E}(L_{m}(k-1)) - \frac{\Lambda_{m}(k-1)}{\mu_{m}}\right) \frac{1}{c_{m}\mu_{m}} + \frac{1}{\mu_{m}} \\ \Lambda_{m}(k) &= \frac{kv_{m}}{\sum_{n=1}^{M} v_{n}\mathsf{E}(S_{n}(k))} \\ \mathsf{E}(L_{m}(k)) &= \Lambda_{m}(k)\mathsf{E}(S_{m}(k)) \end{split}$$

where $\prod_{m}(k-1)$ is probability that all servers are busy

- $\prod_m (k-1)$ can be approximated by probability of waiting \prod_W in $M/M/c_m$ with $\lambda = \Lambda_m(k-1)$ and $\mu = \mu_m$
- For $c_m = \infty$ (no waiting)

$$\mathsf{E}(S_m(k)) = \frac{1}{\mu_m}$$

• For population
$$k = 1, 2, \dots, N$$

$$E(S_{P}(k)) = E(L_{P}(k-1))\frac{1}{\mu_{P}} + \frac{1}{\mu_{P}}, \quad E(S_{SR}(k)) = \frac{1}{\mu_{SR}}$$
$$\Lambda_{P}(k) = \Lambda_{SR}(k) = \frac{k}{E(S_{P}(k)) + \frac{1}{\mu_{SR}}}$$
$$E(L_{P}(k)) = \Lambda_{P}(k)E(S_{P}(k)) = k - E(L_{SR}(k))$$

with initially $E(L_P(0)) = E(L_{SR}(0)) = 0$

General closed network: Approximate mean value analysis

- Service times is station *m* are General with mean $E(B_m)$, cv c_{B_m} and mean residual $E(R_m) = \frac{1}{2}(1 + c_{B_m}^2)E(B_m)$
- For population $k = 1, 2, \dots, N$

$$E(S_m(k)) = \Pi_m(k-1) \frac{E(R_m)}{c_m} + \left(E(L_m(k-1)) - \Lambda_m(k-1)E(B_m)\right) \frac{E(B_m)}{c_m} + E(B_m)$$

$$\Lambda_m(k) = \frac{kv_m}{\sum_{n=1}^M v_n E(S_n(k))}$$

$$E(L_m(k)) = \Lambda_m(k)E(S_m(k))$$

where $\prod_{m}(k-1)$ can be approximated by probability of waiting in M/M/c

• In single server station

$$\mathsf{E}(S_m(k)) = \rho_m(k-1)\mathsf{E}(R_m) + (\mathsf{E}(L_m(k-1)) - \rho_m(k-1)) \ \mathsf{E}(B_m) + \mathsf{E}(B_m)$$

where $\rho_m(k-1) = \Lambda_m(k-1) \operatorname{E}(B_m)$

- General pick times and general storage/retrieval times
- For population k = 1, 2, ..., N

$$E(S_{P}(k)) = \rho_{P}(k-1)E(R_{P}) + (E(L_{P}(k-1)) - \rho_{P}(k-1)) E(B_{P}) + E(B_{P}), \quad E(S_{SR}(k)) = E(B_{SR})$$

$$\Lambda_{P}(k) = \Lambda_{SR}(k) = \frac{k}{E(S_{P}(k)) + E(B_{SR})}$$

$$E(L_{P}(k)) = \Lambda_{P}(k)E(S_{P}(k)) = k - E(L_{SR}(k))$$

with initially $E(L_P(0)) = E(L_{SR}(0)) = 0$ and $\rho_P(k) = \Lambda_P(k)E(B_P)$

General closed network: Example

• Closed system with 4 single server stations and 10 circulating pallets

• Processing characteristics

Station	$E(B_m)$	$c_{B_m}^2$
1	1.25	0.25
2	1.25	0.50
3	2.00	0.33
4	1.60	1.00

General closed network: Example

- Mean value analysis: $\Lambda_1(10) = 0.736$ parts per time unit
- Simulation: $\Lambda_1(10) = 0.743 \pm 0.003$ parts per time unit
- Mean sojourn times

Station	$E(S_m(10))$		
	amva	sim	
1	4.417	$\textbf{4.890} \pm \textbf{0.106}$	
2	5.050	$\textbf{4.760} \pm \textbf{0.169}$	
3	4.181	$\textbf{3.860} \pm \textbf{0.068}$	
4	4.086	$\textbf{3.790} \pm \textbf{0.118}$	

Exponential closed Multi-class network

- Workstations 1, ... , *M*
- Workstation *m* has *c_m* parallel identical machines
- *R* job types
- Population vector $\underline{N} = (N_1, N_2, ..., N_R)$ where N_r is number of circulating jobs of type r
- Service times in workstation *m* are Exponential with rate μ_m (same for each job type)
- Service is in order of arrival
- Routing of type r jobs: type r job moves from workstation m to n with probability p_{mn}^r
- v_{mr} is relative visiting frequency to station *m* of type *r* jobs

$$v_{mr} = \sum_{n=1}^{M} v_{nr} p_{nm}^{r}, \qquad m = 1, 2, \dots, M$$

Exponential closed Multi-class network: Arrival theorem

• Type r job moving from one station to another sees network in equilibrium with population $N - e_r$

Exponential closed Multi-class network: Mean value analysis

• Define for network with population <u>k</u>

 $E(S_{mr}(\underline{k})) = Mean sojourn time in work station$ *m*for type*r*job $<math display="block">\Lambda_{mr}(\underline{k}) = Throughput of type$ *r*jobs of station*m* $<math display="block">E(L_{mr}(\underline{k})) = Mean number of type$ *r*jobs in station*m*

• For population vectors $\underline{k} = \underline{0}$ to $\underline{k} = \underline{N}$

$$E(S_{mr}(\underline{k})) = \sum_{s=1}^{r} E(L_{ms}(\underline{k} - \underline{e}_{r})) \frac{1}{\mu_{m}} + \frac{1}{\mu_{m}}$$
$$\Lambda_{mr}(\underline{k}) = \frac{N_{r}v_{mr}}{\sum_{n=1}^{M} v_{nr}E(S_{nr}(\underline{k}))}$$
$$E(L_{mr}(\underline{k})) = \Lambda_{mr}(\underline{k})E(S_{mr}(\underline{k}))$$

with initially $E(L_{ms}(\underline{0})) = \underline{0}$

• Number of recursion steps is $\prod_{r=1}^{R} N_r!$

Exponential closed Multi-class network: Breaking the recursion

- Assume Type *r* job moving from one station to another sees network in equilibrium with population <u>N</u>
- For population vector <u>N</u>

$$E(S_{mr}(\underline{N})) = \sum_{s=1}^{r} E(L_{ms}(\underline{N})) \frac{1}{\mu_m} + \frac{1}{\mu_m}$$
$$\Lambda_{mr}(\underline{N}) = \frac{N_r v_{mr}}{\sum_{n=1}^{M} v_{nr} E(S_{nr}(\underline{N}))}$$
$$E(L_{mr}(\underline{N})) = \Lambda_{mr}(\underline{N}) E(S_{mr}(\underline{N}))$$

Avoid self queueing

$$\mathsf{E}(S_{mr}(\underline{N})) = \sum_{s \neq r} \mathsf{E}(L_{ms}(\underline{N})) \frac{1}{\mu_m} + \frac{N_r - 1}{N_r} \mathsf{E}(L_{mr}(\underline{N})) \frac{1}{\mu_m} + \frac{1}{\mu_m}$$

Exponential closed Multi-class network: Fixed point equations

• 3*MR* equations for 3*MR* unknowns $E(S_{mr}(\underline{N}))$, $\Lambda_{mr}(\underline{N})$ and $E(L_{mr}(\underline{N}))$

$$E(S_{mr}(\underline{N})) = \sum_{s \neq r} E(L_{ms}(\underline{N})) \frac{1}{\mu_m} + \frac{N_r - 1}{N_r} E(L_{mr}(\underline{N})) \frac{1}{\mu_m} + \frac{1}{\mu_m}$$
$$\Lambda_{mr}(\underline{N}) = \frac{N_r v_{mr}}{\sum_{n=1}^{M} v_{nr} E(S_{nr}(\underline{N}))}$$
$$E(L_{mr}(\underline{N})) = \Lambda_{mr}(\underline{N}) E(S_{mr}(\underline{N}))$$

• Solution by successive substitutions