LNMB EXAM Introduction to Stochastic Processes (ISP)
 Friday 19 November, 2010, 13.00-16.00 hours.

The exam consists of six exercises, each with several parts. For each part it is indicated between square brackets how many points can be earned for the item; the total number of points is 40 .

EXERCISE 1

The Markov chain $\left(X_{n}\right)_{n \geq 0}$ with state space $\{1,2,3,4,5,6\}$ has as matrix of transition probabilities:

$$
\left(\begin{array}{cccccc}
\frac{1}{2} & 0 & 0 & \frac{1}{4} & 0 & \frac{1}{4} \\
0 & \frac{1}{9} & 0 & \frac{1}{3} & \frac{5}{9} & 0 \\
0 & 0 & \frac{1}{2} & 0 & \frac{1}{2} & 0 \\
1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & \frac{1}{3} & 0 & \frac{2}{3} & 0 \\
1 & 0 & 0 & 0 & 0 & 0
\end{array}\right)
$$

a. [2 pt.] What are the classes of communicating states?
b. [2 pt.] Determine the period of each state.
c. [2 pt.] Indicate for each initial state whether a limiting distribution exists, and if yes, determine it.
d. [2 pt.] Calculate, in case of initial state 2 , the probability that state 3 is ever reached.
e. [2 pt.] If the Markov chain starts in state 4, then what is the proportion of time the Markov chain spends in state 1?

EXERCISE 2

Cars arrive at a shopping center according to a Poisson process with rate λ. There are two parking lots at the shopping center, parking lot P_{1} and P_{2}. An arriving car is parked at P_{1} with probability p_{1} and at P_{2} otherwise.
a. [2 pt.] What is the probability that at least 5 cars have arrived at parking lot P_{1} in $[0, t]$?
b. [2 pt.] What is the probability that at least 5 cars have arrived at P_{1} in $[0, t]$, given that in $[0, t]$ no car arrived at parking lot P_{2} ?
c. [2 pt.] What is the probability that exactly 5 cars have arrived at parking lot P_{1} before the first car arrived at P_{2} ?
d. [3 pt.] Suppose that exactly 5 cars have arrived at P_{1} in $[0,10]$. Each of these cars stays (exactly) 7 time units at P_{1}. What is the probability that 3 of these cars are still present at time 10 ?

EXERCISE 3

Consider a branching process $\left\{X_{i}, i=0,1,2, \ldots\right\}$, starting with one particle: $X_{0}=1$. The probability generating function of the number of offspring Z of one particle is given by

$$
G(r)=E\left[r^{Z}\right]=\left(\frac{1-p}{1-p r}\right)^{2}, \quad|r| \leq 1
$$

where $0<p<1$.
a. [2 pt.] Give $E[Z]$ and $\operatorname{var}[Z]$ and determine $E\left[X_{i}\right]$ for $i=1,2, \ldots$..
b. [2 pt.] Determine the probability that the population dies out for $p=\frac{1}{4}$ and $p=\frac{1}{2}$.

EXERCISE 4

A job shop consists of three machines. The amount of time a machine works before breaking down is exponentially distributed with rate 2 . The machines are fixed by two repairmen, in order of breakdown. If a machine breaks down and both of them are idle, then either repairman will be assigned to the machine with probability $\frac{1}{2}$. The amount of time it takes a single repairman to fix a machine is exponentially distributed with rate 3 . Let $X(t)$ denote the number of machines in use at time t.
a. [1 pt.] Argue that $\{X(t), t \geq 0\}$ is a continuous time Markov chain and give its transition rate diagram.
b. [2 pt.] Suppose that at time 0 all three machines are working. Compute the expected time until both repairmen are busy for the first time.
c. [2 pt.] What is the average number of machines in use?
d. [2 pt.] What proportion of time is a repairman busy?

EXERCISE 5

Events occur according to a Poisson process with rate λ. Any event that occurs within a time 1 of the event that immediately preceded it is called a red-event.
a. [2 pt.] What proportion of all events are red-events?
b. [2 pt.] At what rate do red-events occur?

EXERCISE 6

The lifetime of a part is uniform on $(0,1)$. If the part breaks down, it is immediately replaced by a new one, for which a cost of 4 is incurred.
a. [1 pt.] Compute the long-run average cost.

Now the part is preventively replaced by a new one as soon as it reaches the age of $T(<1)$. The preventive replacement cost is 1 .
b. [2 pt.] Compute the long-run average cost.
c. [3 pt.] What value of T minimizes the long-run average cost?

