LNMB EXAM Introduction to Stochastic Processes (ISP)

Saturday October 7, 2006, 11.00-14.00 hours.

EXERCISE 1

a. $[3 \mathrm{pt}].\{1,2,5\},\{3,4\},\{6\}$.
b. [3 pt.] Let $T_{i j}=P\left(\right.$ ever in $\left.j \mid X_{0}=i\right)$. Then $T_{41}=\frac{1}{10} T_{31}+\frac{1}{2} 1+\frac{2}{5} 0$ and $T_{31}=\frac{2}{5}+\frac{1}{2}+\frac{1}{10} T_{41}$.

Hence $T_{31}=\frac{95}{99}$ and $T_{41}=\frac{59}{99}$.
c. [4 pt.] Starting from $\{1,2,5\}: V_{1}=\{3 / 10,5 / 10,0,0,2 / 10,0\}$.

Starting from 6: $V_{6}=\{0,0,0,0,0,1\}$.
Starting from 3: $\frac{95}{99} V_{1}+\frac{4}{99} V_{6}$.
Starting from 4: $\frac{59}{99} V_{1}+\frac{40}{99} V_{6}$.

EXERCISE 2

a. $[2 \mathrm{pt}.] \mathrm{e}^{-(200+100) * 0.01}=\mathrm{e}^{-3}$.
b. $[2 \mathrm{pt}.] \frac{\lambda_{1}}{\lambda_{1}+\lambda_{2}}=\frac{1}{3}$.
c. [2 pt.] $1-\mathrm{e}^{-\lambda_{1} t}-\lambda_{1} t \mathrm{e}^{-\lambda_{1} t}=1-3 \mathrm{e}^{-2}$.
d. [2 pt.] $\frac{\lambda}{\lambda+s}$ is the LST of the time until one task has arrived, so $\left(\frac{\lambda}{\lambda+s}\right)^{K}$ is the LST of the time until K tasks have arrived. Now use that $E\left[T_{K}^{i}\right]$ equals $(-1)^{i}$ times the i-th derivative of the latter LST to derive that the variance equals $\frac{K}{90000}$.
e. $[2 \mathrm{pt}.] \int_{0}^{\infty} \mu_{1} \mathrm{e}^{-\mu_{1} t} \sum_{n=0}^{\infty} \mathrm{e}^{-\lambda_{2} t} \frac{\left(\lambda_{2} t\right)^{n}}{n!} z^{n} \mathrm{~d} t=\frac{\mu_{1}}{\mu_{1}+\lambda_{2}(1-z)}$ with $\mu_{1}=\lambda_{2}=200$.

EXERCISE 3

a. $[2$ pt. $] E[Z]=\frac{1-p}{p}$ and $E\left[X_{i}\right]=E[Z]^{i}=\frac{(1-p)^{i}}{p^{i}}$.
b. [2 pt.] Clearly $\pi_{0}=1$ for $\frac{1}{2} \leq p \leq 1$ (since then $E[Z] \leq 1$). If $0 \leq p<\frac{1}{2}$, then π_{0} is the root in $[0,1)$ of

$$
\pi_{0}=\sum_{i=0}^{\infty} P[Z=i] \pi_{0}^{i}=\frac{p}{1-(1-p) \pi_{0}},
$$

yielding

$$
\pi_{0}=\frac{p}{1-p}
$$

EXERCISE 4

a. [2 pt.] The transition rate matrix Q is

$$
\left(\begin{array}{ccc}
-2 \lambda & 2 \lambda & 0 \\
\mu & -\lambda-\mu & \lambda \\
0 & 2 \mu & -2 \mu
\end{array}\right) .
$$

b. [2 pt.] Let $T_{i}(i=1,2)$ denote the time, starting from state i, it takes to enter state 0 .

Then

$$
E\left[T_{1}\right]=\frac{1}{\lambda+\mu}+\frac{\lambda}{\lambda+\mu} E\left[T_{2}\right], \quad E\left[T_{2}\right]=\frac{1}{2 \mu}+E\left[T_{1}\right] .
$$

Solving these equations gives

$$
E\left[T_{1}\right]=\frac{2 \mu+\lambda}{2 \mu^{2}} .
$$

c. [2 pt.] The balance equations are:

$$
\begin{aligned}
2 \lambda P_{0} & =\mu P_{1} \\
\lambda P_{1} & =2 \mu P_{2} .
\end{aligned}
$$

from which, together with the normalization equation, follows that

$$
P_{0}=\left(\frac{\mu}{\lambda+\mu}\right)^{2} .
$$

Alternatively, this can be obtained by noting that both workers are working independently, and the probability that a working is 'working' is $\mu /(\lambda+\mu)$.
d. [2 pt.] Now only two states are possible, state 0 and 1 . Balance of flow gives

$$
2 \lambda P_{0}=\mu P_{1},
$$

and thus

$$
P_{0}=\frac{\mu}{\mu+2 \lambda} .
$$

EXERCISE 5

a. [2 pt.] The mean time between replacements is $\frac{7}{6}$ year. Hence the system is replaced $\frac{6}{7}$ times per year.
b. [2 pt.] The long-run average cost per year is $1400 \cdot \frac{6}{7}=1200$ euro.
c. [2 pt.] The mean time between two events is

$$
\int_{t=0}^{\frac{2}{3}}\left(t+\frac{1}{6}\right) e^{-t} \mathrm{~d} t+\frac{5}{6} \int_{t=\frac{2}{3}}^{\infty} e^{-t} \mathrm{~d} t=\frac{7}{6}-e^{-2 / 3}=0.653 .
$$

d. [2 pt.] The mean cost of an event is $1400 \cdot P\left[L<\frac{2}{3}\right]+200 \cdot P\left[L>\frac{2}{3}\right]+600 \cdot P\left[\frac{2}{3}<L<\right.$ $\left.\frac{5}{6}\right]=831$ euro. Hence the mean cost per year is

$$
\frac{831}{0.653}=1273 \text { euro. }
$$

