LNMB EXAM Introduction to Stochastic Processes (ISP)
Tuesday September 23, 2008, 14.00-17.00 hours.

EXERCISE 1

a. [2 pt.] Classes of communicating states are $A=\{1,4\}, B=\{5\}$ and $C=\{2,3,6\}$.
b. [3 pt.] For initial state in A the limiting distribution fulfills

$$
\begin{aligned}
& \pi_{1}=\frac{2}{3} \pi_{1}+\pi_{4} \\
& \pi_{4}=\frac{1}{3} \pi_{1}
\end{aligned}
$$

It follows from $\pi_{1}+\pi_{4}=1$ that $\pi_{1}=3 / 4$ and $\pi_{4}=1 / 4\left(\pi_{i}=0\right.$ for $\left.i \notin A\right)$. For initial state in the class C we have to solve

$$
\begin{aligned}
& \pi_{2}=\pi_{3}+\frac{1}{4} \pi_{6} \\
& \pi_{3}=\frac{3}{4} \pi_{6} \\
& \pi_{6}=\pi_{2}
\end{aligned}
$$

Together with $\pi_{2}+\pi_{3}+\pi_{6}=1$ this leads to $\pi_{6}=\pi_{2}=4 / 11$ and $\pi_{3}=3 / 11\left(\pi_{i}=0\right.$ for $i \notin C)$. Finally, state 5 is transient and with probability $(1 / 6) /(5 / 6)=1 / 5$ the class A is ever reached, with probability $4 / 5$ the class C is ever reached. It follows that the limit distribution is given by

$$
\begin{aligned}
& \pi_{1}=\frac{3}{4} \cdot \frac{1}{5}=\frac{3}{20} . \\
& \pi_{2}=\frac{4}{11} \cdot \frac{4}{5}=\frac{16}{55} . \\
& \pi_{3}=\frac{3}{11} \cdot \frac{4}{5}=\frac{12}{55} . \\
& \pi_{4}=\frac{1}{4} \cdot \frac{1}{5}=\frac{1}{20} . \\
& \pi_{5}=0 \\
& \pi_{6}=\frac{4}{11} \cdot \frac{4}{5}=\frac{16}{55} .
\end{aligned}
$$

c. [3 pt.] The probability that state 2 is ever reached from 5 is equal to the probability that the first step out of class C leads into class C, which is $\frac{4}{5}$ (see b.).
d. [2 pt.] The process can go from 6 to 2 either directly (w.p. $p=1 / 4$) or via state 3 (w.p. $q=3 / 4$). Hence the mean number of required steps is

$$
\frac{1}{4} \cdot 1+\frac{3}{4} \cdot 2=\frac{7}{4}
$$

EXERCISE 2

Let $N(t)$ denote the number of thunderstorms during t weeks.
a. [1 pt.] $E[N(t)]=\lambda \cdot t=2 \cdot 4=8$ thunderstorms in four weeks.
b. $[2 \mathrm{pt}] P.[N(t)=k]=\frac{(2 t)^{k}}{k!} e^{-2 t}$, so that

$$
P[N(1)>1]=1-P[N(1)=0]-P[N(1)=1]=1-e^{-2}-2 e^{-2} \approx 0,594
$$

c. [3 pt.] Using the independent increment property, we have

$$
\begin{aligned}
P[\text { at least one storm every week, } 8 \text { weeks }] & =P[N(1) \geq 1]^{8}=(1-P[N(1)=0])^{8} \\
& =\left(1-e^{-2}\right)^{8} \approx 0,313 .
\end{aligned}
$$

d. [4 pt.] Non-severe thunderstorms occur with intensity $\nu=3 / 2$ per week. It follows that the first thunderstorm is severe with probability $p=\frac{\mu}{\mu+\nu}=1 / 4$. Another way of showing this is the following: the distributions of the time of the first severe (the first non-severe) thunderstorm is exponential with mean $1 / \mu(1 / \nu)$. Then p is the probability that an exponential random variable with mean $1 / \mu$ is smaller than the other, which is given by $\mu /(\mu+\nu)$.

EXERCISE 3

a. [2 pt.] $E[Z]=G^{\prime}(1)=\frac{c}{1-c}$ and $E\left[X_{i}\right]=E[Z]^{i}=\left(\frac{c}{1-c}\right)^{i}$.
b. [2 pt.] The extinction probability $\pi_{0}=1$ for all c for which $E[Z] \leq 1$, and thus for all $0<c \leq \frac{1}{2}$. If $\frac{1}{2}<c<1$, then π_{0} is the unique root on $(0,1)$ of the equation

$$
\pi_{0}=G\left(\pi_{0}\right),
$$

yielding

$$
\pi_{0}=\frac{1-c}{c}
$$

EXERCISE 4

Take as 1 minute as time unit.
a. [1 pt.] The state space is $\{0, A, B, A B\}$ with transition rate matrix

$$
Q=\left(\begin{array}{cccc}
-2 & 1 & 1 & 0 \\
2 & -4 & 0 & 2 \\
1 & 0 & -3 & 2 \\
0 & 1 & 2 & -3
\end{array}\right)
$$

b. [2 pt.] Let $T_{A}, T_{B}, T_{A B}$ denote the time, starting from state A, B and $A B$ respectively, it takes to enter state 0 . Then

$$
\begin{aligned}
E\left[T_{A}\right] & =\frac{1}{4}+\frac{1}{2} E\left[T_{A B}\right] \\
E\left[T_{B}\right] & =\frac{1}{3}+\frac{2}{3} E\left[T_{A B}\right] \\
E\left[T_{A B}\right] & =\frac{1}{3}+\frac{1}{3} E\left[T_{A}\right]+\frac{2}{3} E\left[T_{B}\right] .
\end{aligned}
$$

Solving these equations gives

$$
E\left[T_{A}\right]=\frac{15}{14}(\min) .
$$

c. [2 pt.] The balance equations are:

$$
\begin{aligned}
2 p_{0} & =2 p_{A}+p_{B}, \\
4 p_{A} & =p_{0}+p_{A B}, \\
3 p_{B} & =p_{0}+2 p_{A B}, \\
3 p_{A B} & =2 p_{A}+2 p_{B},
\end{aligned}
$$

from which, together with the normalization equation $p_{0}+p_{A}+p_{B}+p_{A B}=1$, follows that

$$
p_{0}=p_{A}=p_{A B}=\frac{2}{7}, \quad p_{A}=\frac{1}{7}
$$

d. [1 pt.] The fraction of calls that is lost is $P_{A B}=\frac{2}{7}$.
e. [2 pt.] Let state 1 denote the state ' 1 call on hold'. Then the balance equations become

$$
\begin{aligned}
5 p_{A B} & =p_{A}+p_{B}+3 p_{1} \\
3 p_{1} & =2 p_{A B}
\end{aligned}
$$

while the balance equations in states $0, A$ and B remain unaltered. Solution gives

$$
p_{1}=\frac{4}{25},
$$

which is the fraction of calls that is lost.

EXERCISE 5

a. [2 pt.] Let p_{i} denote the probability that i orders are processed during a week. Then

$$
p_{i}=e^{-5} \frac{5^{i}}{i!}, \quad i=0,1,2,3,4 ; \quad p_{5}=1-\sum_{i=0}^{4} p_{i}=1-\sum_{i=0}^{4} e^{-5} \frac{5^{i}}{i!}
$$

b. [2 pt.] The mean number per hour is the mean number per week divided by the duration of a week, so

$$
\frac{1}{40} \sum_{i=0}^{5} i p_{i}=\frac{1}{8}\left(1-e^{-5} \frac{5^{4}}{4!}\right)
$$

c. [2 pt.] Let T be the time to produce 5 orders, so T is Erlang- 5 distributed with mean 40 hours. This means that the distribution function is given by

$$
P(T \leq t)=1-\sum_{i=0}^{4} e^{-t / 8 \frac{(t / 8)^{i}}{i!}, \quad t \geq 0,0,0, ~}
$$

and the density is

$$
f_{T}(t)=\frac{1}{8} e^{-t / 8} \frac{(t / 8)^{4}}{4!}
$$

Let B denote the time the facility is busy during a week and I denote the idle time, then

$$
\begin{aligned}
E(B) & =\int_{t=0}^{40} t f_{T}(t) d t+40 P(T>40) \\
& =40 \int_{t=0}^{40} \frac{1}{8} e^{-t / 8} \frac{(t / 8)^{5}}{5!} d t+40 P(T>40) \\
& =40\left(1-\sum_{i=0}^{5} e^{-5} \frac{5^{i}}{i!}+\sum_{i=0}^{4} e^{-5} \frac{5^{i}}{i!}\right) \\
& =40\left(1-e^{-5} \frac{5^{5}}{5!}\right)=40\left(1-e^{-5} \frac{5^{4}}{4!}\right) .
\end{aligned}
$$

Hence, for the mean idle time per week we find

$$
E(I)=40-E(B)=40 e^{-5} \frac{5^{4}}{4!} \text { (hours). }
$$

d. [2 pt.] The long-run average cost per hour is the average cost per week divided by the duration of a week, so

$$
\frac{1}{40}\left(50 E(I)+100\left[5-\sum_{i=0}^{5} i p_{i}\right]\right)=\frac{250}{4} e^{-5} \frac{5^{4}}{4!}
$$

