LNMB EXAM Introduction to Stochastic Processes (ISP)

Friday 19 November, 2010, 13.00-16.00 hours.

EXERCISE 1

a. [2 pt.] The classes of communicating states are $\{3,5\}$ and $\{2\}$ and $\{1,4,6\}$.
b. [2 pt.] The period of each state is 1 .
c. [2 pt.] For initial states 3 and 5 the limiting distribution is

$$
\pi=\left(\pi_{1}, \pi_{2}, \pi_{3}, \pi_{4}, \pi_{5}, \pi_{6}\right)=\left(0,0, \frac{2}{5}, 0, \frac{3}{5}, 0,\right)
$$

For initial states 1,4 or 6 the limiting distribution is

$$
\pi=\left(\frac{2}{3}, 0,0, \frac{1}{6}, 0, \frac{1}{6}\right) .
$$

Finally, state 2 is transient and with probability $\frac{3}{8}$ the class $\{1,4,6\}$ is ever reached, with probability $\frac{5}{8}$ the class $\{3,5\}$ is ever reached. It follows that the limiting distribution is given by

$$
\pi=\left(\frac{1}{4}, 0, \frac{1}{4}, \frac{1}{16}, \frac{3}{8}, \frac{1}{16}\right) .
$$

d. [2 pt.] For initial state 2 , the probability that state 3 is ever reached is equal to $\frac{5}{8}$.
e. [2 pt.] The proportion of time spent in state 1 is $\frac{2}{3}$.

EXERCISE 2

a. [2 pt.] The probability that at least 5 cars have arrived in $[0, t]$ is equal to

$$
1-\sum_{n=0}^{4} e^{-p_{1} \lambda t} \frac{\left(p_{1} \lambda t\right)^{n}}{n!} .
$$

b. [2 pt.] Same answer as a., since the arrivals at P_{1} and P_{2} are independent.
c. [2 pt.] The probability that exactly 5 cars have arrived in P_{1} before the first one in P_{2} is given by

$$
p_{1}^{5}\left(1-p_{1}\right) .
$$

d. [3 pt.] The 5 cars arrived uniformly in $[0,10]$. So the probability that a car is still present at time 10 is $\frac{7}{10}$. Hence, the probability that 3 of them are present at time 10 is

$$
\binom{5}{3}\left(\frac{7}{10}\right)^{3}\left(\frac{3}{10}\right)^{2} .
$$

EXERCISE 3

a. $[2$ pt. $] E[Z]=\frac{2 p}{1-p}, \operatorname{var}[Z]=\frac{2 p}{(1-p)^{2}}$ and $E\left[X_{i}\right]=E[Z]^{i}=\left(\frac{2 p}{1-p}\right)^{i}$.
b. [2 pt.] The extinction probability $\pi_{0}=1$ for $p=\frac{1}{2}$. If $p=\frac{1}{2}$, then π_{0} is the unique root on $(0,1)$ of the equation

$$
\pi_{0}=G\left(\pi_{0}\right)
$$

This yields

$$
\pi_{0}=\frac{1}{\left(2-\pi_{0}\right)^{2}},
$$

which can be reduced to

$$
\left(\pi_{0}-1\right)\left(\pi_{0}^{2}-3 \pi_{0}+1\right)=0
$$

The root on $(0,1)$ is given by

$$
\pi_{0}=\frac{3-\sqrt{5}}{2}
$$

EXERCISE 4

a. [1 pt.] The state space is $\{0,1,2,3\}$. The transition rate from state $n>0$ to $n-1$ is $2 n$, and the transition rate from $n<3$ to $n+1$ is 6 if $n=0$ or 1 , and 3 if $n=2$.
b. [2 pt.] Let T_{n} denote the time, starting from state $n>1$, to reach 1 . Then

$$
\begin{aligned}
& E\left[T_{3}\right]=\frac{1}{6}+E\left[T_{2}\right], \\
& E\left[T_{2}\right]=\frac{1}{7}+\frac{3}{7} E\left[T_{3}\right] .
\end{aligned}
$$

Solving these equations gives

$$
E\left[T_{3}\right]=\frac{13}{24}
$$

c. [2 pt.] The equilibrium distribution is

$$
\pi=\left(\pi_{0}, \pi_{1}, \pi_{2}, \pi_{3}\right)=\left(\frac{4}{43}, \frac{12}{43}, \frac{18}{43}, \frac{9}{43}\right) .
$$

Hence, the average number of machines in use is $\pi_{1}+2 \pi_{2}+3 \pi_{3}=1 \frac{32}{43}$.
d. [2 pt.] The proportion of time a repairman is busy is $\pi_{0}+\pi_{1}+\frac{1}{2} \pi_{2}=\frac{25}{43}$.

EXERCISE 5

a. [2 pt.] The proportion of red-events is $1-e^{-\lambda}$.
b. [2 pt.] Red-events occur at rate $\left(1-e^{-\lambda}\right) \lambda$.

EXERCISE 6

a. [1 pt.] The long-run average cost are $2 \cdot 4=8$.
b. [2 pt.] A cycle C is the time elapsing till the part breaks down or reaches the age T (and is replaced). Then

$$
E[C]=\int_{0}^{T} t \mathrm{~d} t+T(1-T)=T-\frac{1}{2} T^{2}
$$

Let K denote the cost in a cycle, then

$$
E[K]=4 \cdot T+1 \cdot(1-T)=1+3 T
$$

Hence, the long-run average cost are

$$
\frac{E[K]}{E[C]}=\frac{2+6 T}{2 T-T^{2}}
$$

c. [3 pt.] Minimizing the average cost over T yields $T=\frac{\sqrt{7}-1}{3}$.

