LNMB EXAM Introduction to Stochastic Processes (ISP)

Monday September 27, 2010, 13.15-16.15 hours.

EXERCISE 1

a. [2 pt.] The classes of communicating states are $\{3,4\}$ en $\{6\}$ en $\{1,2,5\}$.
b. [3 pt.] For initial states 3 and 4 the limiting distribution is

$$
\pi=\left(\pi_{1}, \pi_{2}, \pi_{3}, \pi_{4}, \pi_{5}, \pi_{6}\right)=\left(0,0, \frac{2}{5}, \frac{3}{5}, 0,0\right) .
$$

For initial states 1,2 or 5 the limiting distribution is

$$
\pi=\left(\frac{15}{38}, \frac{11}{38}, 0,0, \frac{12}{38}\right)
$$

Finally, state 6 is transient and with probability $\frac{2}{3}$ the class $\{3,4\}$ is ever reached, with probability $\frac{1}{3}$ the class $\{1,2,5\}$ is ever reached. It follows that the limiting distribution is given by

$$
\pi=\left(\frac{5}{38}, \frac{11}{114}, \frac{4}{15}, \frac{2}{5}, \frac{4}{38}\right) .
$$

c. [2 pt.] For initial state 6 , the probability that state 2 is ever reached is equal to $\frac{1}{3}$.
d. [2 pt.] The mean time between visits to state 2 is $\frac{38}{11}$.

EXERCISE 2

a. [2 pt.] The probability that at least 3 persons have arrived in $[0, t]$ is equal to

$$
1-\sum_{n=0}^{2} e^{-\left(\lambda_{c}+\lambda_{r}\right) t} \frac{\left(\left(\lambda_{c}+\lambda_{r}\right) t\right)^{n}}{n!}
$$

b. [2 pt.] The probability distribution $F(t)$ of the time until the third arrival is the same as in a., namely an Erlang-3 distribution with parameter $\lambda_{c}+\lambda_{r}$,

$$
F(t)=1-\sum_{n=0}^{2} e^{-\left(\lambda_{c}+\lambda_{r}\right) t} \frac{\left(\left(\lambda_{c}+\lambda_{r}\right) t\right)^{n}}{n!}
$$

c. [2 pt.] The probability that exactly 100 customers have arrived before the first bank robber is given by

$$
\left(\frac{\lambda_{c}}{\lambda_{c}+\lambda_{r}}\right)^{100} \frac{\lambda_{r}}{\lambda_{c}+\lambda_{r}} .
$$

d. [3 pt.] She arrived uniformly in $[0,1]$. So the probability that she is still present at time 1 is

$$
\int_{0}^{1} e^{-(1-y)} \mathrm{d} y=1-\frac{1}{e} .
$$

EXERCISE 3

a. [2 p.. $E[Z]=\frac{2(1-p)}{p}$ and $E\left[X_{i}\right]=E[Z]^{i}=\left(\frac{2(1-p)}{p}\right)^{i}$.
b. [2 pt.] The extinction probability $\pi_{0}=1$ for all p for which $E[Z] \leq 1$, and thus for all $\frac{2}{3} \leq p<1$. If $0<p<\frac{2}{3}$, then π_{0} is the unique root on $(0,1)$ of the equation

$$
\pi_{0}=G\left(\pi_{0}\right)
$$

where

$$
G(z)=E\left(z^{Z}\right)=\frac{p^{2}}{(1-(1-p) z)^{2}}
$$

This yields

$$
\pi_{0}=\frac{p^{2}}{\left(1-(1-p) \pi_{0}\right)^{2}},
$$

which can be reduced to

$$
\left(\pi_{0}-1\right)\left((1-p)^{2} \pi_{0}^{2}-\left(1-p^{2}\right) \pi_{0}+p^{2}\right)=0
$$

The root on $(0,1)$ is given by

$$
\pi_{0}=\frac{1+p-\sqrt{(1+p)^{2}-4 p^{2}}}{2(1-p)}
$$

EXERCISE 4

Take as 1 minute as time unit.
a. [1 pt.] The state space is $\{0,1,2, \ldots\}$. The transition rate from state $n \geq 0$ to $n+1$ is 2 (per minute) and from n to $n-1$ it is 4 if $n \geq 2$ and 2 if $n=1$.
b. [2 pt.] Let T_{n} denote the time, starting from state $n<2$, to reach 2 . Then

$$
\begin{aligned}
& E\left[T_{0}\right]=\frac{1}{2}+E\left[T_{1}\right] \\
& E\left[T_{1}\right]=\frac{1}{4}+\frac{1}{2} E\left[T_{0}\right]
\end{aligned}
$$

Solving these equations gives

$$
E\left[T_{1}\right]=1(\mathrm{~min})
$$

c. [2 pt.] The balance equations (between states $n-1$ and n) are:

$$
\begin{aligned}
2 p_{0} & =2 p_{1}, \\
2 p_{n-1} & =4 p_{n}, \quad n=2,3, \ldots,
\end{aligned}
$$

from which, together with the normalization equation $p_{0}+p_{1}+\cdots=1$, follows that

$$
p_{0}=\frac{1}{3}, \quad p_{n}=\frac{1}{3}\left(\frac{1}{2}\right)^{n-1}, \quad n=1,2, \ldots
$$

d. [2 pt.] The average length of a quiet period is $E\left[T_{1}\right]=1(\mathrm{~min})$.
e. [2 pt.] Denote by C the length of a crowded period. Then we have

$$
\frac{E[C]}{E\left[T_{1}\right]+E[C]}=p_{2}+p_{3}+\cdots=\frac{1}{3} .
$$

Hence, $E[C]=\frac{1}{2}(\min)$.

EXERCISE 5

a. [3 pt.] Let p_{n} denote the long-run fraction of time that the population consists of n members. The balance equations state

$$
p_{n}(\lambda+\mu)=p_{n-1} \lambda, \quad n=1,2, \ldots
$$

Hence,

$$
p_{n}=\left(\frac{\lambda}{\lambda+\mu}\right)^{n} p_{0}, \quad n=1,2, \ldots
$$

and p_{0} follows from the normalization equation $p_{0}+p_{1}+\cdots=1$, yielding

$$
p_{0}=\frac{\mu}{\lambda+\mu} .
$$

Alternatively, define a cycle C as the time between two subsequent disasters. The expected cycle length is equal to $E(C)=\frac{1}{\mu}$. The expected time that the population is of size n in a cycle is

$$
P(\# \text { reaches } n) \cdot E(\text { Time } \# \text { is } n \mid \# \text { reaches } n)=\left(\frac{\lambda}{\lambda+\mu}\right)^{n} \cdot \frac{1}{\lambda+\mu}
$$

Thus the long-run fraction of time that the population size is n is equal to

$$
\frac{\left(\frac{\lambda}{\lambda+\mu}\right)^{n} \frac{1}{\lambda+\mu}}{\frac{1}{\mu}}=\left(\frac{\lambda}{\lambda+\mu}\right)^{n} \frac{\mu}{\lambda+\mu}
$$

b. [2 pt.] The mean population size just before a disaster is $\lambda \cdot \frac{1}{\mu}=\frac{\lambda}{\mu}$.
c. [2 pt.] The long-run average population size is

$$
\sum_{n=0}^{\infty} n p_{n}=\frac{\lambda}{\mu}
$$

Alternatively, suppose that a member costs 1 unit per time unit while being alive. Then the average population is equal to the average cost per time unit. Since each member has an exponential life with mean $\frac{1}{\mu}$ (memoryless!) and λ members are generated per time unit, it follows that the average cost per time unit are equal to $\lambda \cdot \frac{1}{\mu}=\frac{\lambda}{\mu}$. As second alternative, note that the expected cost in a cycle of length x is given by $\lambda x \cdot \frac{1}{2} x$ (since the mean number of arrivals is λx, and the average lifetime is $\frac{1}{2} x$). So the expected cost in a cycle is

$$
\int_{0}^{\infty} \frac{1}{2} \lambda x^{2} \mu e^{-\mu x} d x=\frac{\lambda}{\mu^{2}} .
$$

Dividing these expected cost by the expected cycle length gives the average cost per time unit, $\frac{\lambda}{\mu}$.
d. [2 pt.] The same answer as in a., namely the probability that the population size is n just before a disaster is equal to

$$
\left(\frac{\lambda}{\lambda+\mu}\right)^{n} \frac{\mu}{\lambda+\mu} .
$$

