LNMB EXAM Introduction to Stochastic Processes (ISP)
Monday September 27, 2010, 13.15-16.15 hours.

EXERCISE 1
a. [2 pt.] The classes of communicating states are {3,4} en {6} en {1,2,5}.
b. [3 pt.] For initial states 3 and 4 the limiting distribution is
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For initial states 1, 2 or 5 the limiting distribution is
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Finally, state 6 is transient and with probability % the class {3,4} is ever reached, with
probability % the class {1,2,5} is ever reached. It follows that the limiting distribution is

given by
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c. [2 pt.] For initial state 6, the probability that state 2 is ever reached is equal to %
d. [2 pt.] The mean time between visits to state 2 is 25.

EXERCISE 2
a. [2 pt.] The probability that at least 3 persons have arrived in [0, ¢] is equal to
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b. [2 pt.] The probability distribution F(¢) of the time until the third arrival is the same
as in a., namely an Erlang-3 distribution with parameter \. + A,
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c. [2 pt.] The probability that exactly 100 customers have arrived before the first bank

robber is given by
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d. [3 pt.] She arrived uniformly in [0,1]. So the probability that she is still present at time
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EXERCISE 3

a. [2pt.] B[Z] =222 and E[X,] = E[2) =
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b. [2 pt.] The extinction probability my = 1 for all p for which E[Z] < 1, and thus for all
% <p<lIf0<p< %, then 7y is the unique root on (0, 1) of the equation
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This yields
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which can be reduced to
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The root on (0,1) is given by
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EXERCISE 4
Take as 1 minute as time unit.
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a. [1 pt.] The state space is {0,1,2,...}. The transition rate from state n > 0 to n + 1 is
2 (per minute) and fromnton —1itis4ifn > 2 and 2 if n = 1.
b. [2 pt.] Let T,, denote the time, starting from state n < 2, to reach 2. Then
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Solving these equations gives
E[Ti] = 1 (min).

c. [2 pt.] The balance equations (between states n — 1 and n) are:
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from which, together with the normalization equation py + p; + - - - = 1, follows that
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d. [2 pt.] The average length of a quiet period is E[T}] = 1 (min).
e. [2 pt.] Denote by C' the length of a crowded period. Then we have
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Hence, E[C] = 5 (min).

EXERCISE 5
a. [3 pt.] Let p, denote the long-run fraction of time that the population consists of n
members. The balance equations state
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Hence,
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and pg follows from the normalization equation py + p; + --- = 1, yielding
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Alternatively, define a cycle C' as the time between two subsequent disasters. The expected
cycle length is equal to E(C') = i The expected time that the population is of size n in a
cycle is
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Thus the long-run fraction of time that the population size is n is equal to
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b. [2 pt.] The mean population size just before a disaster is A - }% =2
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c. [2 pt.] The long-run average population size is
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Alternatively, suppose that a member costs 1 unit per time unit while being alive. Then
the average population is equal to the average cost per time unit. Since each member has

an exponential life with mean % (memoryless!) and A members are generated per time

unit, it follows that the average cost per time unit are equal to \ - l% = ﬁ As second

alternative, note that the expected cost in a cycle of length x is given by Az - %[E (since the
mean number of arrivals is Az, and the average lifetime is %iL‘) So the expected cost in a
cycle is
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Dividing these expected cost by the expected cycle length gives the average cost per time
unit, 2.
d. [2 pt.] The same answer as in a., namely the probability that the population size is n

just before a disaster is equal to
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