1. Consider a branching process in discrete time with $X_{0}=1$. Compute the extinction probability $\pi_{0}$ in the following two cases for the offspring distribution:
a. $P(Z=0)=1 / 5, P(Z=1)=3 / 5$, and $P(Z=2)=1 / 5$.
b. $P(Z=0)=1 / 5, P(Z=1)=2 / 5$, and $P(Z=2)=2 / 5$.
c. Solve part a and b, but now for $X_{0}=2$.
2. Let $X_{0}=1$, define $P_{j}=P(Z=j)$ and let $P_{1}=\alpha, P_{0}=P_{2}=P_{3}=\frac{1-\alpha}{3}$, with $\alpha \in(0,1)$.
a. Determine $E\left[X_{n}\right]$.
b. Determine the extinction probability $\pi_{0}$.
c. Answer part a and b again, but now when $X_{0}$ is random with $P\left(X_{0}=n\right)=(1 / 2)^{n}$, $n \geq 1$.
3. Consider the following continuous-time analogue of a Branching process: Each particle has a lifetime which is exponentially distributed with rate $\mu$. During its lifetime, the particle generates children with rate $\lambda$. Let $X_{t}$ be the number of particles at time $t$.
a. Assume $X_{0}=1$. Let $\pi_{0}$ be the extinction probability. Derive an equation for $\pi_{0}$. Consider both the case $\lambda \leq \mu$ and $\lambda>\mu$.
b. Show that $X_{t}, t \geq 0$, is a birth and death process, and provide the birth and death rates.
4. Exercise 7.2.
5. Exercise 7.4.
