
1.

a. The state space is {0, 1, . . . , c− 1, c}, and the birth rates are

λn = λ, n = 0, 1, . . . , c− 1,

and the death rates
µn = nµ, n = 1, 2, . . . , c.

Hence the transition rate matrix Q is given by

Q =



−λ λ 0 0 0 · · · 0
µ −(λ + µ) λ 0 0 · · · 0
0 2µ −(λ + 2µ) λ 0 · · · 0
...

. . . . . . . . . . . . . . .
...

0 · · · 0 (c− 2)µ −(λ + (c− 2)µ) λ 0
0 · · · 0 0 (c− 1)µ −(λ + (c− 1)µ) λ
0 · · · 0 0 0 cµ −cµ


b. Now the state space does not stop at c, i.e., it is {0, 1, . . .} and the birth rates are

λn = λ, n = 0, 1, . . . ,

and the death rates
µn = nµ, n = 1, 2, . . . .

2.

a. The forward equations are

P
′

00(t) = µP01(t)− λP00(t)

P
′

01(t) = λP00(t)− µP01(t).

Using P01(t) = 1− P00(t), we obtain the following differential equation,

P
′

00(t) = µ− (µ + λ)P00(t).

b. The backward equations are

P
′

11(t) = µP01(t)− µP11(t)

P
′

01(t) = λP11(t)− λP01(t).

Multiplying these equations by λ and µ, respectively, and then adding them, we
obtain

λP
′

11(t) + µP
′

01(t) = 0.
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Hence, for some c,
λP11(t) + µP01(t) = c.

Substituting t = 0 yields c = λ. Using the above equation, we get

P
′

11(t) = λ− (λ + µ)P11(t).

The forward equations are

P
′

11(t) = λP10(t)− µP11(t)

P
′

10(t) = µP11(t)− λP10(t).

By substituting P10(t) = 1−P11(t), we obtain the same differential equation as before.

c. Solving the differential equation for P00(t) with initial condition P00(0) = 1 yields

P00(t) =
µ

λ + µ
+

λ

λ + µ
e−(λ+µ)t, t ≥ 0.

3. The number of failed machines is a birth and death process with

λ0 = 2λ, λ1 = λ, λn = 0, n > 1, µ1 = µ2 = µ, µn = 0, n 6= 1, 2.

Now substitute into the backward equations.

4. Let

Ij(t) =

{
0, if machine j is working at time t,
1, otherwise.

Also, let the state be (I1(t), I2(t)). This is clearly a continuous-time Markov chain with

v(0,0) = λ1 + λ2, λ(0,0);(0,1) = λ2, λ(0,0);(1,0) = λ1,

v(0,1) = λ1 + µ2, λ(0,1);(0,0) = µ2, λ(0,1);(1,1) = λ1,

v(1,0) = µ1 + λ2, λ(1,0);(0,0) = µ1, λ(1,0);(1,1) = λ2,

v(1,1) = µ1 + µ2, λ(1,1);(0,1) = µ1, λ(1,1);(1,0) = µ2.

By the independence assumption we have

P(i,j),(k,l)(t) = Pi,k(t)Qj,l(t), (1)

where Pi,k(t) is the probability that the first machine is in state k at time t given that it
was at state i at time 0; Qj,l(t) is defined similarly for the second machine. By example
4.11 we have

P0,0(t) =
µ1

λ1 + µ1

+
λ1

λ1 + µ1

e−(λ1+µ1)t,

P1,0(t) =
µ1

λ1 + µ1

− µ1

λ1 + µ1

e−(λ1+µ1)t,
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and by the same argument,

P1,1(t) =
λ1

λ1 + µ1

+
µ1

λ1 + µ1

e−(λ1+µ1)t,

P0,1(t) =
λ1

λ1 + µ1

− λ1

λ1 + µ1

e−(λ1+µ1)t.

Of course, similar expressions for the second machine are obtained by replacing (λ1, µ1) by
(λ2, µ2). We then get P(i,j),(k,l)(t) by formula (??). For instance,

P(0,0),(0,0)(t) = P0,0(t)Q0,0(t) =
µ1 + λ1e

−(λ1+µ1)t

λ1 + µ1

· µ2 + λ2e
−(λ2+µ2)t

λ2 + µ2

.
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