1.

a. The state space is $\{0,1, \ldots, c-1, c\}$, and the birth rates are

$$
\lambda_{n}=\lambda, \quad n=0,1, \ldots, c-1,
$$

and the death rates

$$
\mu_{n}=n \mu, \quad n=1,2, \ldots, c .
$$

Hence the transition rate matrix Q is given by

$$
Q=\left(\begin{array}{ccccccc}
-\lambda & \lambda & 0 & 0 & 0 & \cdots & 0 \\
\mu & -(\lambda+\mu) & \lambda & 0 & 0 & \cdots & 0 \\
0 & 2 \mu & -(\lambda+2 \mu) & \lambda & 0 & \cdots & 0 \\
\vdots & \ddots & \ddots & \ddots & \ddots & \ddots & \vdots \\
0 & \cdots & 0 & (c-2) \mu & -(\lambda+(c-2) \mu) & \lambda & 0 \\
0 & \cdots & 0 & 0 & (c-1) \mu & -(\lambda+(c-1) \mu) & \lambda \\
0 & \cdots & 0 & 0 & 0 & c \mu & -c \mu
\end{array}\right)
$$

b. Now the state space does not stop at c, i.e., it is $\{0,1, \ldots\}$ and the birth rates are

$$
\lambda_{n}=\lambda, \quad n=0,1, \ldots,
$$

and the death rates

$$
\mu_{n}=n \mu, \quad n=1,2, \ldots .
$$

2.

a. The forward equations are

$$
\begin{aligned}
& P_{00}^{\prime}(t)=\mu P_{01}(t)-\lambda P_{00}(t) \\
& P_{01}^{\prime}(t)=\lambda P_{00}(t)-\mu P_{01}(t) .
\end{aligned}
$$

Using $P_{01}(t)=1-P_{00}(t)$, we obtain the following differential equation,

$$
P_{00}^{\prime}(t)=\mu-(\mu+\lambda) P_{00}(t) .
$$

b. The backward equations are

$$
\begin{aligned}
P_{11}^{\prime}(t) & =\mu P_{01}(t)-\mu P_{11}(t) \\
P_{01}^{\prime}(t) & =\lambda P_{11}(t)-\lambda P_{01}(t) .
\end{aligned}
$$

Multiplying these equations by λ and μ, respectively, and then adding them, we obtain

$$
\lambda P_{11}^{\prime}(t)+\mu P_{01}^{\prime}(t)=0 .
$$

Hence, for some c,

$$
\lambda P_{11}(t)+\mu P_{01}(t)=c .
$$

Substituting $t=0$ yields $c=\lambda$. Using the above equation, we get

$$
P_{11}^{\prime}(t)=\lambda-(\lambda+\mu) P_{11}(t) .
$$

The forward equations are

$$
\begin{aligned}
& P_{11}^{\prime}(t)=\lambda P_{10}(t)-\mu P_{11}(t) \\
& P_{10}^{\prime}(t)=\mu P_{11}(t)-\lambda P_{10}(t) .
\end{aligned}
$$

By substituting $P_{10}(t)=1-P_{11}(t)$, we obtain the same differential equation as before.
c. Solving the differential equation for $P_{00}(t)$ with initial condition $P_{00}(0)=1$ yields

$$
P_{00}(t)=\frac{\mu}{\lambda+\mu}+\frac{\lambda}{\lambda+\mu} e^{-(\lambda+\mu) t}, \quad t \geq 0 .
$$

3. The number of failed machines is a birth and death process with

$$
\lambda_{0}=2 \lambda, \quad \lambda_{1}=\lambda, \quad \lambda_{n}=0, n>1, \quad \mu_{1}=\mu_{2}=\mu, \quad \mu_{n}=0, n \neq 1,2 .
$$

Now substitute into the backward equations.
4. Let

$$
I_{j}(t)= \begin{cases}0, & \text { if machine } j \text { is working at time } t \\ 1, & \text { otherwise }\end{cases}
$$

Also, let the state be $\left(I_{1}(t), I_{2}(t)\right)$. This is clearly a continuous-time Markov chain with

$$
\begin{array}{lll}
v_{(0,0)}=\lambda_{1}+\lambda_{2}, & \lambda_{(0,0) ;(0,1)}=\lambda_{2}, & \lambda_{(0,0) ;(1,0)}=\lambda_{1}, \\
v_{(0,1)}=\lambda_{1}+\mu_{2}, & \lambda_{(0,1) ;(0,0)}=\mu_{2}, & \lambda_{(0,1) ;(1,1)}=\lambda_{1}, \\
v_{(1,0)}=\mu_{1}+\lambda_{2}, & \lambda_{(1,0) ;(0,0)}=\mu_{1}, & \lambda_{(1,0) ;(1,1)}=\lambda_{2}, \\
v_{(1,1)}=\mu_{1}+\mu_{2}, & \lambda_{(1,1) ;(0,1)}=\mu_{1}, & \lambda_{(1,1) ;(1,0)}=\mu_{2} .
\end{array}
$$

By the independence assumption we have

$$
\begin{equation*}
P_{(i, j),(k, l)}(t)=P_{i, k}(t) Q_{j, l}(t) \tag{1}
\end{equation*}
$$

where $P_{i, k}(t)$ is the probability that the first machine is in state k at time t given that it was at state i at time $0 ; Q_{j, l}(t)$ is defined similarly for the second machine. By example 4.11 we have

$$
\begin{aligned}
P_{0,0}(t) & =\frac{\mu_{1}}{\lambda_{1}+\mu_{1}}+\frac{\lambda_{1}}{\lambda_{1}+\mu_{1}} e^{-\left(\lambda_{1}+\mu_{1}\right) t} \\
P_{1,0}(t) & =\frac{\mu_{1}}{\lambda_{1}+\mu_{1}}-\frac{\mu_{1}}{\lambda_{1}+\mu_{1}} e^{-\left(\lambda_{1}+\mu_{1}\right) t}
\end{aligned}
$$

and by the same argument,

$$
\begin{aligned}
P_{1,1}(t) & =\frac{\lambda_{1}}{\lambda_{1}+\mu_{1}}+\frac{\mu_{1}}{\lambda_{1}+\mu_{1}} e^{-\left(\lambda_{1}+\mu_{1}\right) t} \\
P_{0,1}(t) & =\frac{\lambda_{1}}{\lambda_{1}+\mu_{1}}-\frac{\lambda_{1}}{\lambda_{1}+\mu_{1}} e^{-\left(\lambda_{1}+\mu_{1}\right) t}
\end{aligned}
$$

Of course, similar expressions for the second machine are obtained by replacing $\left(\lambda_{1}, \mu_{1}\right)$ by $\left(\lambda_{2}, \mu_{2}\right)$. We then get $P_{(i, j),(k, l)}(t)$ by formula (??). For instance,

$$
P_{(0,0),(0,0)}(t)=P_{0,0}(t) Q_{0,0}(t)=\frac{\mu_{1}+\lambda_{1} e^{-\left(\lambda_{1}+\mu_{1}\right) t}}{\lambda_{1}+\mu_{1}} \cdot \frac{\mu_{2}+\lambda_{2} e^{-\left(\lambda_{2}+\mu_{2}\right) t}}{\lambda_{2}+\mu_{2}} .
$$

