1. There are $k+1$ states: state 0 means the machine is working, state i means that it is in repair phase $i, i=1, \ldots, k$. The balance equations for the limiting probabilities are

$$
\begin{aligned}
\lambda P_{0} & =\mu_{k} P_{k}, \\
\mu_{1} P_{1} & =\lambda P_{0}, \\
\mu_{i} P_{i} & =\mu_{i-1} P_{i-1}, \quad i=2, \ldots, k,
\end{aligned}
$$

and the normalization equation is

$$
P_{0}+\cdots+P_{k}=1 .
$$

To solve, note that

$$
\mu_{i} P_{i}=\mu_{i-1} P_{i-1}=\mu_{i-2} P_{i-2}=\cdots=\lambda P_{0} .
$$

Hence,

$$
P_{i}=\left(\lambda / \mu_{i}\right) P_{0},
$$

and, upon summing,

$$
1=P_{0}\left(1+\sum_{i=1}^{k} \frac{\lambda}{\mu_{i}}\right) .
$$

Therefore,

$$
P_{0}=\left(1+\sum_{i=1}^{k} \frac{\lambda}{\mu_{i}}\right)^{-1}, \quad P_{i}=\left(\lambda / \mu_{i}\right) P_{0}, \quad i=1, \ldots, k .
$$

a. P_{i}.
b. P_{0}.
2. The number in the system is a birth and death process with parameters

$$
\lambda_{n}=\lambda /(n+1), \quad n \geq 0, \quad \mu_{n}=\mu, \quad n \geq 1 .
$$

From the equation above (6.20),

$$
1 / P_{0}=1+\sum_{n=1}^{\infty}(\lambda / \mu)^{n} / n!=e^{\lambda / \mu}
$$

and from (6.20),

$$
P_{n}=P_{0}(\lambda / \mu)^{n} / n!=e^{-\lambda / \mu}(\lambda / \mu)^{n} / n!, \quad n \geq 0 .
$$

3. Let the state denote the number of machines that are down. This yields a birth and death process with

$$
\lambda_{0}=\frac{3}{10}, \quad \lambda_{1}=\frac{2}{10}, \quad \lambda_{2}=\frac{1}{10}, \quad \lambda_{i}=0, \quad i \geq 3,
$$

and

$$
\mu_{1}=\frac{1}{8}, \quad \mu_{2}=\frac{2}{8}, \quad \mu_{3}=\frac{2}{8} .
$$

The balance equations reduce to

$$
\begin{aligned}
P_{1} & =\frac{3 / 10}{1 / 8} P_{0}=\frac{12}{5} P_{0} \\
P_{2} & =\frac{2 / 10}{2 / 8} P_{1}=\frac{4}{5} P_{1}=\frac{48}{25} P_{0} \\
P_{3} & =\frac{1 / 10}{2 / 8} P_{2}=\frac{4}{10} P_{2}=\frac{192}{250} P_{0} .
\end{aligned}
$$

Hence, using $P_{0}+P_{1}+P_{2}+P_{3}=1$, yields

$$
P_{0}=\left(1+\frac{12}{5}+\frac{48}{25}+\frac{192}{250}\right)^{-1}=\frac{250}{1522} .
$$

a. Average number not in use is

$$
P_{1}+2 P_{2}+3 P_{3}=\frac{2136}{1522}=\frac{1068}{761} .
$$

b. Proportion of time both repairmen are busy is

$$
P_{2}+P_{3}=\frac{336}{761} .
$$

4.

a. $\pi_{0}=\frac{1}{3}$.
b. $\pi_{0}=1$.
c. $\pi_{0}=(\sqrt{3}-1) / \sqrt{2}$.

