1. The random variable N is equal to $N(1)+1$ where $\{N(t, t \geq 0\}$ is the renewal process whose interarrival distribution is uniform on $(0,1)$. By the result of Example 7.3,

$$
E[N(t)]=m(1)+1=e .
$$

2. Yes, p / μ.
3.

$$
\frac{N(t)}{t}=\frac{1}{t}+\frac{\text { number of renewals in }\left(X_{1}, t\right]}{t} .
$$

Since $X_{1}<\infty$, Proposition 7.1 implies that, as $t \rightarrow \infty$,

$$
\frac{\text { number of renewals in }\left(X_{1}, t\right]}{t} \rightarrow \frac{1}{\mu} .
$$

4. Let X be the time between successive d-events. Conditioning on the time until the next event follwoing a d-event gives

$$
E[X]=\int_{0}^{d} x \lambda e^{-\lambda x} d x+\int_{d}^{\infty}(x+E[X]) \lambda e^{-\lambda x} d x=1 / \lambda+E[X] e^{-\lambda d} .
$$

Therefore,

$$
E[X]=\frac{1}{\lambda\left(1-e^{-\lambda d}\right)} .
$$

a. $\frac{1}{E[X]}=\lambda\left(1-e^{-\lambda d}\right)$.
b. $1-e^{-\lambda d}$.
5.
a. X_{i} is the amount of time he has to travel after his i th choice (we will assume that he keeps making choices even after becoming free). N is the number of choices he makes until becoming free.
b.

$$
E[T]=E\left[\sum_{1}^{N} X_{i}\right]=E[N] E[X] .
$$

N is a geometric random variable with $p=1 / 3$, so $E[N]=3, E[X]=\frac{1}{3}(2+4+6)=4$. Hence, $E[T]=12$.
c.

$$
E\left[\sum_{1}^{N} X_{i} \mid N=n\right]=(n-1) \frac{1}{2}(4+6)+2=5 n-3
$$

since, given $N=n, X_{1}, \ldots, X_{n-1}$ are equally likely to be either 4 or $6, X_{n}=2$. Further, $E\left[\sum_{1}^{n} X_{i}\right]=4 n$.
d. From c,

$$
E\left[\sum_{1}^{N} X_{i}\right]=E[5 N-3]=15-3=12 .
$$

