
For Review
 O

nly

 

 

 

 

 

 

Mobile Fulfillment Systems: Model and Design Insights 
 

 

Journal: Transportation Science 

Manuscript ID: TS-2014-0083 

Manuscript Type: Original Manuscript 

Date Submitted by the Author: 26-Apr-2014 

Complete List of Authors: Roy, Debjit; Indian Institute of Management, Production and Quantitative 
Methods 
Nigam, Shobhit; Indian Institute of Management, Production and 
Quantitative Methods 
Adan, Ivo; Eindhoven University of Technology, Dept. of Mechanical 
Engineering 
De Koster, René; RSM Erasmus University, Management of Technology and 
Innovation 
Resing, Jacques; Eindhoven University of Technology, Department of 
Mathematics and Computing Science 

Keywords/Area of Expertise: Order Picking, Storage Policies, Queuing 

  

 

 

ScholarOne, 375 Greenbrier Drive, Charlottesville, VA, 22901 1.434.964.4100

Transportation Science



For Review
 O

nly

Mobile Fulfillment Systems:

Model and Design Insights

Debjit Roy and Shobhit Nigam

Indian Institute of Management Ahmedabad, Gujarat, India

Ivo Adan

Department of Mechanical Engineering,

Technische Universiteit Eindhoven, The Netherlands

René de Koster

Rotterdam School of Management,

Erasmus University, The Netherlands

Jacques Resing

Department of Mathematics and Computing Science,

Technische Universiteit Eindhoven, The Netherlands

Abstract The Mobile Shelf-based Order Pick (MSOP) system is a recent solution for

automating pick, pack, and ship activities in distribution centers. In this system, the items

are stored on movable storage shelves, also known as inventory pods, and brought to the

order pick stations by robotic drive units. By using coordinated robots and decentralized

decision making, the MSOP system has reported increased flexibility and productivity in

order picking activities. We develop stylized performance evaluation models to analyze

both order picking and replenishment processes in MSOP systems, based on multi-class

closed queueing network models. We derive order throughput time performance for differ-

ent choices of pod storage strategies in aisles, different depth-to-width ratios of the storage

area using customized travel time expressions of the robots in the aisles. We also inves-

tigate whether a dedicated robot system for processing order picking and replenishment

activities is beneficial over a pooled robot system. The models are validated using de-

tailed simulations. Systems with many short aisles lead to shorter expected throughput

times than systems with few but longer aisles. By using pooled robots instead of dedi-

cated robots, the expected throughput time for order picking reduces upto one-third of its

initial value; however, the expected replenishment time estimate increases upto three times.
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1 Introduction

Warehouses are increasingly employing automation technologies to reduce operational costs,

increase customer satisfaction and improve operational efficiency and productivity. A Mo-

bile Shelf-based Order Pick (MSOP) system — a parts-to-picker order pick system — is

a new paradigm for automating pick, pack and ship activities in distribution centers that

significantly improves worker productivity and throughput capacity. The MSOP system,

based on mobile-rack technology, is pioneered by Kiva Systems (Wurman et al. (2008);

D’Andrea and Wurman (2008); Mountz (2012)). The items are stored on movable storage

shelves (also referred as the inventory pods, see Figure 1). The product search and retrieval

of the inventory pods are performed by small, autonomous drive-units (also referred as

robots). The Kiva warehouse system is depicted in Figure 2.

Upto 55% of the operating costs at a distribution center are due to its order pick costs, which

include costs associated with item picking, consolidation, and order packing (De Koster et al.

(2007)). The traditional part-to-picker order pick systems such as the miniload AS/RS has

three primary inefficiencies: 1) a sequential order picking flow (only one item can be picked

simultaneously in an aisle); 2) not easily scalable and 3) inability to handle peak demands.

These inefficiencies, which result in delivery time delays and high operating costs, can be

potentially overcome by an MSOP system. In an MSOP system, movable storage shelves,

which contain items ordered by a customer, are brought automatically to an order picker.

Due to the large number of robots which can transport many item-pods simultaneously, an

order picker can complete the order in a shorter time and can complete more orders in a day

compared to traditional picker-to-parts systems (Enright and Wurman (2011)). An MSOP

system provides added benefits of flexibility and scalability in addition to the associated

advantages of automation. Most e-retailers have massive peaks in their distribution shipping

volumes (during special occasions such as Thanksgiving or Christmas). By adding more

robots, pods and/or work stations, the throughput capacity of handling additional orders

can be addressed economically and in a relatively short time span (http://www.mwpvl.

com/html/kiva_systems.html). Users of the Kiva Mobile-robotic Fulfillment SystemTM
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Inventory pod

Robot

Figure 1: An inventory pod being carried by a Kiva robot (adapted from
http://www.bastiansolutions.com/images/automation/kiva-unit.jpg)

Figure 2: Kiva warehouse system (source: http://www.kivasystems.com)
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Box take away
conveyor

Replenishment

Storage Blocks
Inventory Pod

Order-Picking

Station

Station

Replenishment

Order P icking

Figure 3: Typical configuration of Kiva system (adapted from Wurman et al. (2008))

include several established retailers such as Staples, Walgreens, Toys ‘R’ Us, Gap Inc., and

Amazon. According to Enright and Wurman (2011), the delivery times and productivity

of these retailers improved substantially with the Kiva system implementation.

Figure 3 shows typical flows within a Kiva system (Enright and Wurman (2011)). In this

configuration, the picker prepares the shipping cartons and transfers them to the pack

station using conveyors. The flow of the pod movements during the order picking and

replenishment process is shown using solid and dotted lines, respectively. The location of a

pod (carrying a particular item) is dynamic and is determined by the item turnover. The

most frequently used items are stocked closer to the order pick station.

Several operational decisions affect the system throughput performance. For instance, the

choice of pod storage location, the choice of order assignment to the order pick stations,

and the choice of the robot to fetch the pod, affect the throughput performance. Likewise,

the design choices such as the number of robots, depth-to-width ratio of the storage area,

and maintaining a dedicated or a pooled fleet for order pick and replenishment processes

may affect the system performance.

In this research, we specifically investigate the performance of the order pick system with
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different pod storage policies: “random open location storage” and “closest open location

storage.” The random open location storage may seem to be the most efficient and com-

monly used storage policy, where any pod (after an order pick) is equally likely to be stored

in any of the open locations. The primary objective of this policy is to maximize space

utilization. In the closest open location storage policy, the pod is stored in the closest

open location within the aisle that has been chosen for retrieval. The closest open location

storage policy may be useful in reducing the travel time of the robot.

Further, robots may be pooled to perform both order pick and replenishment processes,

where the robots complete an order pick operation followed by replenishment (if needed), in

a so-called dual-command operation. It is not clear whether a dedicated fleet of robots per-

forming single-command cycle operations (either order picking or replenishment) provides

better throughput performance. Further, we also investigate the effect of the depth-to-width

ratio on the system performance.

We address the following research questions:

• How many robots are required to meet the system throughput requirements?

• Do dedicated robots in order picking and replenishment (single command cycles)

perform better than pooled robots, which are shared between order picking and re-

plenishment?

• Which pod storage policy performs better, random open location (ROL) or closest

open location (COL) storage?

• Which depth/width ratio results in better throughput performance?

The MSOP system is modeled as a closed queueing network with a simplification of the

robot movement. The robots move only along the aisles and cross-aisles present in the order

pick area. This robot movement differs from the original design of the Kiva System, where

the empty robots can also travel underneath the pods to access another aisle. The model

development follows a two-stage approach: 1) Markov-chain based models are developed

to analyze the travel time within an aisle, 2) customized queueing network models are

developed to analyze order picking and replenishment processes, and to answer each research

question. To analyze the effect of alternative pod storage policies, we develop a single-

class closed queueing network model. To analyze the effect of robot allocation (pooled
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vs dedicated), we develop two queueing network models with multiple robot classes. In

the first multi-class closed queueing network model, the robots are pooled and they switch

classes based on transaction probabilities (order picking vs replenishment) whereas in the

second multi-class model, two dedicated fleets are used, one for order picking and another

for replenishment. The model also captures the interference delays that could potentially

occur in the aisles (if multiple robots attempt to access the aisle at the same time). We use

a collision-avoidance protocol for the aisle movement. The models are evaluated using the

approximate mean value analysis algorithm and validated with simulation. The analytical

models present an attractive alternative to simulation for optimizing design parameters

and improving system performance measures. The performance measures obtained from

the models include robot utilization, system throughput and expected throughput time for

order picking and replenishment.

The remainder of this paper is organized as follows. Section 2 reviews literature on order

pick systems. Section 3 describes the system operations and the modeling assumptions

used in this paper to develop the queueing network model. In Section 4, we describe the

system and modeling assumptions. The queueing network models developed for the MSOP

system with various layout configurations are presented in Section 5. The numerical results

and the insights obtained from the analytical models are discussed in Section 6. Section 7

reports our conclusions and provides directions for future research.

2 Literature Review

In this section, we review literature in the area of parts-to-picker order pick systems with a

specific focus on MSOP and vehicle-based warehouse systems. In all cases we restrict our

review to travel-time and performance evaluation models, which is also the scope of our

study.

Order picking is the most labour-intensive operation in warehouses and a very capital-

intensive operation in warehouses with automated systems (De Koster et al. (2007)). Several

travel time models for order picking systems that consider a specific equipment, storage

policy and order picking area layout combinations are proposed in the literature. Daniels

et al. (1998) develop an order picking model in which they determine the assignment of

inventory to an order and the associated sequencing decisions in which the selected locations

6
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are visited. A detailed literature overview on typical design and control problems such as

optimal layout design, storage assignment methods, routing methods, order batching and

zoning in manual order picking processes is provided by De Koster et al. (2007).

Several different parts-to-picker systems can be distinguished such as the miniload AS/RS,

MSOP systems, and vehicle-based tote handling systems. Our work is motivated by the

Kiva systems in which movable storage shelves can be lifted by small autonomous robots

Enright and Wurman (2011); D’Andrea (2012). A detailed overview of the Kiva system is

given in Wulfraat (2012).

To the best of our knowledge, existing research on analyzing performance of Mobile Shelf-

based Order Pick systems is limited. However, studies on performance analysis of au-

tonomous vehicle-based warehouse systems are available. For instance, some papers discuss

the estimation of cycle times for autonomous devices in Autonomous Vehicle-based Storage

and Retrieval Systems (AVS/RS). An AVS/RS relies on autonomous vehicles to provide

horizontal movement within a tier and uses lifts to provide vertical movement between tiers.

Malmborg (2003a) and Malmborg (2003b) propose cycle-time estimation models based on

Markov Chains. Fukunari and Malmborg (2008) develop an iterative computation algo-

rithm based on queueing approximations to estimate the cycle times in AVS/RS. Fukunari

and Malmborg (2009) extend the previous work by developing a queueing network approach

to estimate the proportion of single and dual command cycles in the system. Kuo et al.

(2007) model the movement of autonomous vehicles as an M/G/V queue nested within

an M/G/L queue for estimating the expected travel times of vehicles and lifts. In such

an AVS/RS, vehicle blocking delays in the aisles and cross-aisles can significantly impact

system throughput and transaction cycle times. Roy et al. (2014) develop protocols to

model vehicle blocking using a queueing network model and evaluate design trade-offs. A

comprehensive review of collision prevention strategies in AGV systems can be found in

Le-Anh and De Koster (2006).

Roy et al. (2012) develop a multi-class semi-open queueing network model to investigate

several design decisions such as the configurations of aisles and columns, allocation of

resources to zones, and vehicles assignment rules that significantly affect the performance

of a system. Ekren et al. (2013) and Cai et al. (2013) develop semi-open queueing network

models for analyzing the performance of the multi-tier AVS/RS with pooled vehicles. These

models provide insights on the impact of tier configuration and sizing decisions on expected

7
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cycle times. However, note that existing studies on AVS/RS have been restricted to only

pallet-based high density storage systems and not order pick systems.

Replenishment activities are very important to prevent shortage of products during intensive

order picking (De Koster et al. (2007)). However, current literature on vehicle-based storage

and retrieval systems do not explicitly model replenishment strategies. The performance of

replenishment activities becomes more frequent and crucial during a busy picking periods

(for example, Thanksgiving and Christmas). To the best of our knowledge, this research is

a first attempt to model a mobile-racks based order pick system and to answer the design

tradeoffs by considering both order picking and replenishment activities. Particularly, we

investigate the effect of storage strategies and investigate the performance of dedicated and

pooled robot configurations in the MSOP system.

3 System Operations and Modeling Assumptions

In this section, we describe the operations and the system modeling assumptions considered

for an MSOP system. We then describe the protocol we develop for avoiding collisions of

the robots in an aisle.

3.1 System operations

The system consists of an even number of aisles A. This simplifies the analysis, but it is

straightforward to derive expressions for an odd number of aisles. We assume that an equal

number of mobile shelves (pods) with same dimensions are present along the two sides of

an aisle. A single pod is assumed to be l meter long and w meter wide. The order pick

area is D meters long and W meters wide. The warehouse shape factor is characterized by

depth/width, which is the ratio between D and W . D proxies the number of aisles and W

proxies the number of pod storage locations per aisle. The two terms, ddeparr and dlocarr denote

the distance between the departure and the arrival paths, and the distance between the

arrival path and the first bay location, respectively.

To answer our research questions, we consider two different layouts of a warehouse: layout

1 with only an order pick station, and layout 2 with both an order pick and a replenishment

station (shown in Figure 4).

8
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Layout 1: We consider an order pick station located in the middle of the cross-aisle (in

front of the aisles). This area is called the order pick area. A replenishment station is not

considered in this layout. After completing an order pick, the robot first travels using the

departure path of a cross-aisle and then travels along the center line of an aisle to store the

pod in a pod storage location. Then the robot lifts a pod from another storage location

from the same side of the aisle and brings it along the arrival path to the order pick station.

Note that the robots can travel bidirectionally within an aisle. However, we allow only one

robot to access the aisle at a time (which will be explained later). We analyze this layout

using two different pod storage strategies.

Layout 2: We consider two areas, an order pick area and a replenishment area in a

warehouse where the order pick station is in the order pick area and the replenishment

station is in the replenishment area (opposite of the order pick area), see Figure 4. When

the pod is emptied, a robot lifts the pod and travels to the replenishment station to replenish

the pod. Using this layout, we later answer the trade-offs between usage of dedicated and

pooled robots for order picking and replenishment.

A picker is stationed at the order pick station for picking items (filling orders) and a worker

is stationed at the replenishment point for restocking the bins in the inventory pods. We

assume that there is always a sufficient number of orders waiting to be processed by the

robots, i.e. the robots never wait for order arrivals.

3.2 Assumptions

The following assumptions are made for the analysis of the MSOP system:

• The order pick station and the replenishment station have sufficient waiting space for

robots (with pods).

• All storage locations and the pods have the same size. Therefore all storage locations

are candidates for storing or retrieving any pod.

• Robots are scheduled according to the First-Come-First-Served (FCFS) policy.
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Order pick station

departure-path
arrival-path

CAFD

L

CAFD

R

dlocarr

darrdep

Repleinishment station

D

W

CAFA

L

CABA

RCABA

L

CAFA

R

CABD

L CABD

R

Replenishment

area

Order pick

area Cross-aisle

Cross-aisle

Figure 4: Layout of a warehouse with both order pick and replenishment station

• A dual-command cycle is considered for the storage and retrieval, i.e., a robot will

perform a pod storage followed by a pod retrieval request in a single trip for both

order picking and replenishment.

• The travel velocity of a robot is constant and robot acceleration/deceleration effects

are ignored.

• To decide the next pod retrieval location, the robot chooses the left or right portion

of the cross-aisle with equal probability. Further, each aisle and the pick side within

an aisle for pod retrievals are chosen randomly.

• Each side of an aisle has at least one open location available for pod storage. Each

robot stores a pod at the side of an aisle where the next retrieval has to be carried

out. Note this is not a very restrictive assumption, as these storage systems work

with many open spaces (20-30%), see Figure 2. We use this assumption to derive the

aisle travel times with different pod storage strategies.

• All items for filling an order are present in one inventory pod.

• There are always orders waiting to be served by the robot, i.e., the queue of orders is

never empty.

10

Page 10 of 37

ScholarOne, 375 Greenbrier Drive, Charlottesville, VA, 22901 1.434.964.4100

Transportation Science

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Review
 O

nly

Note that most assumptions can be relaxed, we come back to that in the conclusions section.

3.3 Aisle Protocol for the MSOP System

In the MSOP system, blocking can occur during the movements of a robot in the aisles.

That is, a robot in the process of storing and retrieving the pod in an aisle could be blocked

by another robot entering the same aisle. For collision-avoidance during robot movements,

it is assumed that a robot will only enter the aisle when the previous robot has completed

its service and leaves the last point of the aisle.

4 Modeling the MSOP System

Using a queueing model, we analyze the effect of multiple design parameters on system

performance measures. In this section, we describe the nodes in the queueing models and

the service time distributions at the nodes.

4.1 Network Nodes

As discussed in Section 3 we consider two warehouse layouts. In the first layout, there is a

departure and arrival path only in the order pick area. In the second layout, the departure

and arrival paths are present in both the order pick (front) and the replenishment areas

(back). The order pick (OP) station is located at the middle of the cross-aisle in the

departure path. We divide the cross-aisle departure path into two equal segments (CAFD

L

and CAFD

R corresponding to the left and right segment of the cross-aisle in the order pick

area). Likewise, the arrival path along the cross-aisle is divided into two equal segments

(CAFA

L and CAFA

R corresponding to the left and right segment of the cross-aisle in the

arrival path). A similar cross-aisle segmentation is done for the departure and arrival paths

at the replenishment station (CABD

L and CABD

R for the departure path and CABA

L and

CABA

R for the arrival path). Each segment of the cross-aisle is modeled as an Infinite Server

(IS) queue. A robot starts its service and accesses either the left or the right side of the

segments on the departure path (with equal probability, 1/2). It then chooses any one of

11
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Figure 5: Queueing model description

the aisles with equal probability p = 1
A/2 , and then accesses either pick face of the aisle and

moves towards an open rack location to store a pod (based on the pod storage strategy).

Next it moves towards a pick-up location, retrieves the pod and exits the aisle. As soon a

robot exits the aisle it accesses the arrival path segment based on its current position from

either the left or the right side of the cross aisle.

Based on the aisle protocol, only one robot can enter the aisle at a time; therefore, each

aisle is modeled as a single server queue with an infinite buffer size. The picking and the

replenishment stations are modeled as single server queues with service rates µOP and µR

respectively. Since we assume that orders are always waiting to be served by the robot, we

model the layouts 1 and 2 as closed queueing networks (see Figure 5).

The stations in the network have general service times, which are characterized by the mean

and the squared coefficient of variation (SCV).

We now present expressions for the first two moments of the service times describing the

robot movements in the aisles and cross-aisles, and the fulfillment activities at the order
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pick and replenishment stations. To estimate the service times in aisles, we first determine

the steady state probabilities of open locations at each side of an aisle for both pod storage

strategies.

4.2 Aisle Service Time Estimation

We use two different pod storage strategies, random and closest open location, as described

in Section 1. To obtain the mean and variance of the travel and handling time of a robot

during storage and retrieval of a pod in an aisle, for both strategies, we describe the aisle

by a discrete-time Markov chain. The status of storage locations in each side of an aisle

can be either open or used. A location is denoted as open when there is no pod at that

location and denoted as used when a pod is stored at that location. The state of an aisle

can then be defined as a vector s = (a1, a2, · · · , aN ), where ak denotes the status of the

storage location index k:

ak =

{

1, when location k is used;

0, when location k is open.
(1)

Let N denote the total number of locations at each side of an aisle, out of which m locations

are open. The state space Sm consists of all vectors s for which a1 + · · · + aN = N −m.

Hence M =

(

N

m

)

is the number of states in Sm.

Under the random open location storage strategy, exactly m(N−m) states can be reached by

a robot (during pod storage and retrieval), with equal probability, from every state s ∈ Sm.

A state transition occurs when a robot stores a pod in an open location and retrieves a pod

from an used location. Since for every state transition, the reverse transition is also feasible,

we can immediately conclude that the Markov chain is double stochastic, and hence, the

stationary distribution is uniform, i.e.,

π(s) =
1

M
, ∀s ∈ Sm.

Note that this result also follows from symmetry.

Under the closest open location storage strategy the situation is different. Consider again
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a side of an aisle with N storage locations and m open locations. In this case, it is readily

verified that the states s for which the last m− 1 positions are open, i.e., aN−m+1 = · · · =

aN = 0, for some m ≥ 1, form an absorbing class of states, and this class can be reached

from every state. Let Sa,m denote this absorbing class of states. Once this set of states

has been reached, the closest open location storage strategy reduces to the random open

location storage strategy with 1 open location in an aisle with only N−m+1 locations, since

the last m− 1 locations in the aisle will never be used. Hence, the stationary distribution

is given by

π(s) =
1

N −m+ 1
, ∀s ∈ Sa,m,

and π(s) = 0 otherwise. Clearly, this indicates inefficient use of open locations.

4.3 Expectation and Variance of the Service Time in an Aisle

In this section, we determine the average service time in an aisle for the two pod storage

policies. The robot service time in aisles includes the total travel time required to store a

pod and to retrieve another pod, and the pod handling times (pick-up and set-down times).

Random open location storage policy: The service time in aisle, tAisle,R, for the

random open location storage strategy will include the travel time of a robot to store a

pod and retrieve another pod, including the return travel (tWL,R), handling time to store

a pod (tstore), handling time to retrieve a pod (tretrieval) and the time associated to travel

between the arrival-path (onward as well as return) of a cross-aisle to the starting point of

the aisle location, dlocarr with a robot velocity vr, which gives the following form:

tAisle,R = tWL,R + tstore + tretrieval +
2dlocarr

vr
(2)

Note that the travel time associated with the travel between the arrival and the departure

paths is included in the cross-aisle service time (which will be explained later). Let is denote

the location for storing a pod and ir denote the location of retrieving a pod. Let DR(is, ir)

denote the distance travelled to store at location is and retrieve a pod from location ir

and return. In general, the distance travelled DR(is, ir) for storing a pod at location is
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and retrieving a pod from location ir for the random open location storage strategy, and

returning back to the same cross-aisle is given by the following expression:

DR(is, ir) = 2lim − l (3)

where im = max(is, ir).

From the Markov chain analysis (of the random open location storage strategy), we can

conclude that both is and ir are uniform on the N locations (independent of the number

of open locations). Therefore, the joint probability distribution of is and ir is expressed as

follows:

P (is = k, ir = l) =
1

N(N − 1)
∀k, l ∈ {1, . . . , N}, k 6= l (4)

Using (4), the probability mass function, and the first and second moments of im are

obtained using the following expressions.

P (im = k) =
2(k − 1)

N(N − 1)
where k = 2, . . . , N (5)

E[im] =
2(N + 1)

3
(6)

E[i2m] = 2(N + 1)

[

N

4
+

1

6

]

(7)

Using (3), (6), and (7), we can immediately obtain the first and the second moments of the

distance travelled to store and retrieve a pod within the locations in an aisle, E[DR] and

E[D2
R], using the following expressions.

E[DR] =
(4N + 1)l

3
(8)

E[D2
R] =

(6N2 + 2N − 1)l2

3
(9)

The expected service time by a robot in the aisle can be obtained by taking the expectations
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of the terms in (2), which is given as:

E[tAisle,R] = E[tWL,R] + tstore + tretrieval +
2dlocarr

vr
(10)

Since tWL,R = DR

vr
, E[tWL,R] and E[t2WL,R] are obtained from (11) and (12) as follows:

E[tWL,R] =
(4N + 1)l

3vr
(11)

E[t2WL,R] =
(6N2 + 2N − 1)l2

3v2r
(12)

Therefore using (10), we obtain the service rate associated with the robot service time for

the random open location storage strategy,

µAisle,R =
1

E[tAisle,R]
(13)

Using (10) and (11), we obtain the expected service time E[tAisle,R] of a robot in a aisle.

The second moments of the robot service time in an aisle can be calculated as:

E[t2Aisle,R] = E[t2WL,R] +

(

tstore + tretrieval +
2dlocarr

vr

)2

+ 2

(

tstore + tretrieval +
2dlocarr

vr

)

E[tWL,R] (14)

The variance and squared coefficient of variation (SCV) of the robot service time within an

aisle is given by

V ar(tAisle,R) = E[t2Aisle,R]− E[tAisle,R]
2 (15)

cv2Aisle =
V ar(tAisle,R)

E[tAisle,R]2
(16)

Closest open location storage policy: Similar to the random open location storage

policy, the service time in an aisle (tAisle,CL) for the closest open location storage strategy

includes the traveling time within an aisle for storing and retrieving pods (tWL,CL), handling

times (tstore and tretrieval), and time to travel the distance between the arrival-path of a
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cross-aisle to the starting point of the location dlocarr, which together gives the following form:

tAisle,CL = tWL,CL + tstore + tretrieval +
2dlocarr

vr
(17)

However, as discussed in Section 4.2, in steady state the closest open location storage policy

for an aisle with given input parameters (N storage locations and m open locations) will

have m − 1 open locations towards the end of the aisle and one open location will lie in

between the first and the N −m+1 storage locations. Therefore, the two moments of aisle

travel time to store and retrieve a pod, including return travel, (tWL,CL) in a closest open

location storage strategy can be calculated using the same approach as for the random open

location storage strategy considering a shorter aisle with N −m+ 1 storage locations and

one open location.

4.4 Average Service Time for Cross-aisles

The cross-aisles are modeled as infinite server stations and hence the expected distance

travelled by a robot on the cross-aisle on any of the eight cross-aisle segments (four in

the order pick area and four in the replenishment area), E[DCA] can be obtained by the

following expression:

E[DCA] =
A

2
(w +

d

2
) + ddeparr (18)

Using (18), the average travel time in a cross-aisle segment, E[TCA] can be obtained from

E[TCA] =
1

vr
E[DCA] =

1

vr

[

A

2
(w +

d

2
) + ddeparr

]

(19)

where A is the total number of aisles.

The cross-aisle service rate is then expressed as:

µCA =
1

E[TCA]
(20)
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4.5 Service Time at Order Pick and Replenishment Station

The service time of the picker at the order pick station is given by tpick and of the worker

at the replenishment station is given by treplenish, which are both deterministic times and

therefore E[tpick] = tpick and E[treplenish] = treplenish.

µOP =
1

tpick
and µRep =

1

treplenish
. (21)

We now describe the queueing network models of the MSOP system.

5 Queueing Network Models

In this section, we develop three closed queueing network models to answer the research

questions. First, we analyze the effect of storage strategies on the MSOP system perfor-

mance. For this question, we develop a single-class queueing network model with one order

picking station. Second, our aim is to verify if dedicated robots for order picking and re-

plenishment perform better than pooled robots in terms of throughput capacity. For this

purpose, we propose two queueing network models with multi-class robots.

5.1 Queueing Network Model with Order-picking

In this subsection, we develop a closed queueing network model in which a single-class of

V robots are considered for the order picking activity. The model is based on layout 1

described in Subsection 3.1. The queueing network shown in Figure 6 has A + 5 nodes,

where A denotes the number of aisles. Node A + 5 represents the time spent by a robot

at the order picking station, nodes A+ 1 and A+ 2 represent the time spent by the robot

in the left and right side of the departure path in the cross-aisle, nodes A + 3 and A + 4

represent the time spent by the robot on the left and right side of the arrival path in the

cross-aisle.

A robot begins the order pick activity by fetching a pod from the storage location and

proceeds towards the arrival path of a cross-aisle and chooses CAFA

L or CAFA

R . Then it

proceeds towards the order picking station and waits in the buffer area for service at the
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order picking station (node A + 5). Then the robot chooses either a left or right node

(i.e., CAFD

L or CAFD

R ) with equal probability. Thereafter, a robot chooses any of the A
2

aisles with probability 1
A/2 and stores the pod based on a storage policy. In this model

we consider two pod storage strategies, random and closest open location storage strategy.

Using Approximate Mean Value Analysis (AMVA), we obtain the expected cycle time for

order picking E[CTop], the throughput of order picking Xop, and expected queue lengths at

various nodes.

1

2

⌈A

2
⌉

⌈A

2
⌉+ 1

⌈A

2
⌉+ 2

A

µOP

BOP

CAFD

L

CAFD

R

CAFA

L

CAFA

R

A+ 1

A+ 2 A+ 3

A+ 4

A+ 5

B1

Figure 6: Single-class queueing network model for order picking using an MSOP system

5.2 Queueing Network Model with Order-picking and Replenishment

In this subsection, we develop a closed queueing network model in which two classes of

robots, o and r, are considered for the order picking and replenishment station respectively.

We denote the number of robots for each class as Vc, where c ∈ {o, r}. The network

corresponding to Figure 7 consists of A+10 service nodes, which denote the travel time in
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aisles, cross-aisles, order pick station, and replenishment station.

5.2.1 Queueing network model with dedicated robots

We first deploy two robot classes for the order pick and replenishment service, denoted by

o and r respectively. The robots of class o which are deployed for the order pick service,

begin their service by fetching a pod from an aisle storage location and travel back to access

the cross-aisle nodes, either A + 5 (i.e., CAFA

L ) or A + 6 (i.e., CAFA

R ) (i.e., arrival-path of

a cross aisle in forward direction), and proceed toward the node A + 1 order pick station

(see Figure 7). The robot waits in the order pick queue for its service (in a buffer area

BOP ) and then accesses one of the two cross-aisle nodes, node A + 3 (i.e.,CAFD

L ) or node

A+4 (i.e, CAFD

R ) with equal probability, and then accesses any one of the A
2 aisle resources

with probability 1
A/2 . The robot stores the pod in an open storage location in the aisle.

Then the pod storage-retrieval cycle is repeated by the robot i.e., the robot moves towards

a retrieval location, retrieves a pod from the same side of an aisle and proceeds to the order

pick station. The picker takes tpick time to fetch an item from the inventory pod. The

movement of a class r, replenishment robot, is identical to the class o robot except that the

class r robot is serviced at the replenishment station and it uses the cross-aisle resources

in the replenishment area. Note that the aisle resources are shared by robots from both

classes (see Figure 7). Similarly, a robot of class r, which is deployed for replenishment,

fetches an inventory pod from a storage location, accesses either A+9 (i.e, CABA

L ) or A+10

(i.e., CABA

R ) based on its current location, proceeds towards the node A+2 (replenishment

station), and waits in the queue for its service. The worker at replenishment station takes

treplenish time to replenish a pod which causes the robots to wait in a buffer area BR. After

being served, the robot accesses one of the two cross-aisle nodes A+7 (i.e., CABD

L ) or A+8

(i.e., CABD

R ) (i.e., departure-path of cross-aisle in replenishment area) with probability 0.5,

and then accesses any one of the A
2 aisles with probability 1

A/2 to store the replenishment

pod. This marks the end of one retrieval-storage replenishment cycle. After storing the

pod, the robot moves towards a retrieval location, retrieves another replenishment pod, and

the cycle repeats.

The movement of class r and class o robots are shown by dotted and solid lines respectively

in Figure 7. Class switching is not allowed which means that the class o robots are not

allowed to access the cross-aisle and replenishment station node of the replenishment area
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and the class r robots are not allowed to access the cross-aisle and order pick nodes of the

order pick area in the queueing network model. Both classes of robots access the same

aisle nodes because aisles are shared resources and only one robot can enter in an aisle at a

time (refer the aisle protocol). Therefore, there is a buffer area, Bi, in front of aisle nodes,

i ∈ {1, . . . , A}.

Since both classes o and r access the same aisles to complete their service, the waiting times

of a class o robots at aisle nodes is also dependent on the queue length of class r robots in

front of the aisle.

Using Approximate Mean Value Analysis (AMVA) for multi-class closed queueing networks,

we obtain the expected cycle times E[CTop] and E[CTrep], the class-specific expected queue

lengths at all nodes, and the throughputs Xop and Xrep for the order pick and replenish-

ment robot class, respectively (see Buitenhek et al. (2000) for details of the Approximate

MVA algorithm). The basic AMVA algorithm is given below. The indices c, nc, and k refer

to the robot class, the number of robots in class c, and the node respectively. The terms

V r
c,k, s̄c,k, and cvsc,k denote the visiting ratio, the average service time, and the service time

coefficient of variation of class c robot at node k. The terms Qc,k(~n), Uc,k(~n), Xc,k(~n), and

Rc,k(~n) correspond to the average queue length, utilization, throughput, and residence time

of class c robot at node k with ~n state of robots in the network.
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Algorithm 1 AMVA Solution Algorithm for the Multi-class Queueing Network

1: Initialize Qc,k(~0) = 0 for c = 1, · · · , C, k = 1, 2, · · · ,K

2: Initialize Uc,k(~0) = 0 for c = 1, · · · , C, k = 1, 2, · · · ,K

3: for n = 1 to V do ⊲ all states ~n for which
∑C

c=1 nc = n and 0 ≤ nc ≤ Vc, V =
∑C

c=1 Vc

4: for c = 1 to C do
5: for k = 1 to K do ⊲ Residence Time Calculation

6: Rc,k(~n) =
∑C

j=1

{

Uj,k(~n− ~ej)× s̄j,k ×
(1+cv2

sj,k
)

2 + (Qj,k(~n− ~ej)− Uj,k(~n− ~ej))s̄j,k

}

+

s̄c,k ⊲ for Aisles, Order Pick, and Replenishment nodes
7: Rc,k(~n) = s̄c,k ⊲ for Cross aisle nodes
8: end for

9: Rc =
∑K

k=1 V
r
c,k ×Rc,k(~n) ⊲ Total residence time of class c

10: end for
11: for c = 1 to C do
12: for k = 1 to K do
13: Xc(~n) =

nc

Rc
⊲ Throughput of class c

14: Xc,k(~n) = V r
c,k ×Xc(~n) ⊲ Throughput of class c at node k

15: end for
16: end for
17: for k = 1 to K do

18: Xk(~n) =
∑C

c=1 Xc,k(~n) ⊲ Throughput at node k
19: end for
20: for c = 1 to C do
21: for k = 1 to K do
22: Qc,k(~n) = Xc,k(~n)×Rc,k ⊲ Calculate new queue lengths
23: Uc,k(~n) = Xc,k(~n)× s̄c,k ⊲ Calculate new utilizations
24: end for
25: end for
26: end for

5.2.2 Queueing network model with pooled robots

A multiple class queueing network model with a single chain is developed for the MSOP

system with pooled robots. Figure 8 illustrates a system with A + 10 nodes and 2 robot

classes with class switching. The system operates in the following way. There are two

robot classes, one for order picking and the other for replenishment service, denoted by

class index o and r respectively. The robots of class o, which are deployed for the order

picking, access one of the cross-aisle nodes, node A+3 (i.e.,CAFD

L ) or node A+4 (i.e, CAFD

R )

with probability 0.5, and the robots of class r, which are deployed for the replenishment

station, accesses one of the cross-aisle nodes, node A + 7 (i.e.,CABD

L ) or node A + 8 (i.e,

CABD

R ) with probability 0.5. Then a robot of any class l or r accesses any one of the A
2

aisles with probability 1
A/2 . Within an aisle, the robot first stores a pod and then moves

toward a pod retrieval location. With a probability pr, the retrieval request corresponds
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Figure 7: Queueing network model for the MSOP system with dedicated robot classes
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to the order picking activity at the order pick station and with a probability (1 − pr),

the retrieval request corresponds to the replenishment activity. Hence, probabilistic robot

class switching is allowed in this queueing network model. The decision on the robot

class switching should ideally be made immediately after the pod is stored in the storage

location. After this service type decision, the robot either fetches an inventory pod for order

picking or a replenishment pod for item replenishment. Since we model the complete aisle

operation using a single service time distribution, we illustrate the class change operation

in the Figure after the aisle service operation. Four cases are considered in which the robots

either remains in the same class or switches to another class (see Figure 8).

1. If a class o robot receives a retrieval request for order picking (with probability pr)

then the class o robot remains in the same class o, retrieves another pod for order

picking and then accesses the cross-aisle nodes either A+5 (i.e., CAFA

L ) or A+6 (i.e.,

CAFA

R ) (i.e., arrival-path of a cross aisle in order pick area) to reach the order pick

station.

2. If a class o robot receives a retrieval request for replenishment activity (with proba-

bility 1 − pr) then after completing its service in aisle nodes, class o robot changes

its class to class r robot, retrieves the replenishment pod, and accesses the cross-aisle

nodes either A + 9 (i.e, CABD

L ) or A + 10 (i.e., CABD

R ) to reach the replenishment

station.

3. If a class r robot receives a retrieval request for the replenishment activity (with

probability 1 − pr) then the class r robot after completing a service in aisle nodes

remains in the same class r, retrieves another replenishment pod, and accesses the

cross-aisle nodes either A + 9 (i.e, CABD

L ) or A + 10 (i.e., CABD

R ) (i.e., arrival-path

of a cross aisle in replenishment area), to reach the replenishment station.

4. If a class r robot receives a retrieval request for order picking (with probability pr)

then the class r robot after completing its service in aisle nodes, changes its class to

class o robot, retrieves an inventory pod for order picking and accesses the cross-aisle

nodes either A+5 (i.e., CAFA

L ) or A+6 (i.e., CAFA

R ) to reach the order pick station.

In this way, a single chain is formed in which the number of robots is constant in a chain;

however, within the chain, the robots change their class depending on the type of processing
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request. After being serviced at the cross-aisle nodes, a robot with or without class switch

will proceed towards the node A+ 1 (order pick station) or A+ 2 (replenishment station)

with probability 1.

Note that both classes of robots access the same aisle nodes based on the developed aisle

protocol and it is assumed that only one robot can enter an aisle at a time.

Since the robots can switch their class in the aisles for the retrieval request, the cycle times

are associated with the following movements: a robot of any class starts its service by

fetching a pod from a storage location, accesses the cross-aisles, service station (order pick

or replenishment), accesses the cross-aisles to store the pod, and accesses the aisle to store

the pod. Note that this cycle is equivalent if we consider the movement of the robot from

either the order pick or the replenishment station in an aisle, travel for pod storage and

another pod retrieval, and then return to either the order pick or the replenishment station

to complete its service. Note that though the movement cycles are similar, the throughput

time distributions in a cycle are different due to difference in the amounts of queueing at

the nodes.

Using Approximate Mean Value Analysis (AMVA) for the multi-class closed queueing net-

work with single chain, we obtain the expected cycle times E[CTop] and E[CTrep], the

class-specific expected queue lengths at all nodes, and the throughputs Xop and Xrep for

the order picking and replenishment robot class, respectively (Bolch et al. (2006)). We also

obtain the expected queue lengths (QOP , QRep, QAisle) and utilizations (UOP , URep, UAisle)

for the order pick, replenishment, and aisle resources respectively.

6 Numerical Experiments and Design Insights

To perform the numerical experiments, we use the system dimension data from the trade

websites as well as from discussions with practitioners (see Table 1). We employ discrete-

event simulations to validate the proposed analytical models for order picking and replen-

ishment processes.

Simulation experiments are conducted with ARENA software with 8,000 time units (that

corresponds to about 1 million order picks) and 15 replications were used to obtain the

results. The confidence intervals for all performance measures are about ±2% of the average
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Figure 8: Queueing network model for the MSOP system with pooled robots
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Table 1: System Dimensions and Operation Parameters
Symbol Description Values

ddeparr Distance between arrival & departure path 1.2 meter

dlocarr Distance between arrival path & starting point of rack locations 1 meter
d
2 Distance among each side of rack locations to aisle 1 meter

l Gross length of pod location 0.99 meter

w Gross width of pod location 1 meter

vr Speed of a robot 3 meter/sec

tstore Time needed to store a pod 5 sec

tretrieval Time needed to retrieve a pod 5 sec

tpick Time needed for order picking at OP station 15 sec

treplenish Time needed for replenishing a pod 90 sec

pr Probability of an order pick transaction 0.8

measure. Robots decide to access either the left or the right cross-aisles with probability 1
2 .

Then a robot uses any one of the A
2 aisles with probability 1

A/2 . To access an aisle a robot

has to wait for the preceding robot to complete its service. As soon a preceding robot exits

the aisle, the next robot enters an aisle to complete its service.
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Table 2: Performance Measures of MSOP system using a single robot class

Input Output: Performance Measure
Policy Ns

D
W V AQOP

SQOP
δQOP

AQAisle
SQAisle

δQAisle
AUOP

SUOP
δUOP

AUAisle
SUAisle

δUAisle
AE[CTop] SE[CTop] δE[CTop] AX SX δX

Closest 200

1

3 1.74 1.67 4.1% 0.18 0.18 1.9% 86% 88% 1.8% 0.17 0.17 1.5% 52.10 51.32 1.5% 207.36 210.43 1.5%
4 2.59 2.59 0.1% 0.21 0.20 3.1% 94% 96% 1.6% 0.18 0.18 1.7% 63.51 62.31 1.9% 226.80 231.09 1.9%
5 3.52 3.52 0.1% 0.22 0.22 1.4% 98% 99% 1.0% 0.19 0.18 5.5% 76.54 75.32 1.6% 235.08 238.97 1.6%

2

3 1.85 1.83 1.3% 0.09 0.09 0.0% 89% 91% 1.8% 0.09 0.08 6.8% 50.36 49.26 2.2% 214.56 219.26 2.1%
4 2.75 2.74 0.4% 0.10 0.09 9.2% 96% 98% 1.6% 0.09 0.09 2.3% 62.25 61.11 1.9% 231.48 235.65 1.8%
5 3.71 3.70 0.3% 0.10 0.10 1.5% 99% 100% 1.1% 0.09 0.09 5.0% 75.80 74.55 1.7% 237.60 241.44 1.6%

Random 200

1

3 1.70 1.65 2.8% 0.19 0.19 0.4% 85% 87% 1.9% 0.17 0.17 2.3% 52.70 51.43 2.5% 204.84 209.98 2.4%
4 2.53 2.53 0.1% 0.22 0.21 2.6% 94% 95% 1.2% 0.19 0.19 0.6% 63.92 62.22 2.7% 225.36 231.44 2.6%
5 3.45 3.43 0.6% 0.23 0.22 3.6% 98% 98% 0.3% 0.20 0.19 4.7% 76.78 75.33 1.9% 234.36 238.94 1.9%

2

3 1.81 1.80 0.6% 0.09 0.09 5.1% 88% 89% 0.6% 0.09 0.08 12.1% 50.89 49.81 2.2% 212.40 216.84 2.0%
4 2.70 2.71 0.5% 0.10 0.10 3.9% 96% 97% 1.1% 0.10 0.09 8.1% 62.56 61.98 0.9% 230.04 232.32 1.0%
5 3.65 3.67 0.5% 0.11 0.10 7.7% 99% 100% 1.3% 0.10 0.10 0.2% 75.95 74.98 1.3% 236.88 240.07 1.3%

Closest 400

1

3 1.57 1.53 2.7% 0.15 0.15 3.2% 82% 83% 0.7% 0.14 0.14 3.0% 54.60 53.21 2.6% 197.64 202.96 2.6%
4 2.37 2.33 1.8% 0.18 0.17 4.1% 92% 94% 1.9% 0.16 0.16 0.8% 65.10 64.59 0.8% 221.04 222.93 0.8%
5 3.27 3.17 3.0% 0.19 0.18 4.8% 97% 98% 1.1% 0.17 0.16 6.0% 77.41 76.48 1.2% 232.56 235.35 1.2%

2

3 1.65 1.62 1.8% 0.11 0.11 1.6% 85% 86% 1.6% 0.11 0.10 5.9% 53.19 52.08 2.1% 203.04 207.36 2.1%
4 2.48 2.46 0.9% 0.13 0.12 4.8% 94% 95% 1.3% 0.12 0.11 6.6% 64.02 63.24 1.2% 225.00 227.70 1.2%
5 3.41 3.40 0.2% 0.13 0.13 1.9% 98% 99% 1.2% 0.12 0.12 2.0% 76.71 75.15 2.1% 234.72 239.51 2.0%

Random 400

1

3 1.54 1.51 1.7% 0.16 0.15 6.3% 81% 83% 1.9% 0.15 0.14 6.1% 55.26 53.80 2.7% 195.48 200.76 2.6%
4 2.32 2.33 0.4% 0.18 0.18 1.9% 92% 93% 1.6% 0.17 0.16 4.3% 65.57 65.55 0.0% 219.60 219.70 0.0%
5 3.21 3.15 1.8% 0.20 0.19 3.3% 97% 97% 0.5% 0.18 0.17 3.6% 77.70 77.48 0.3% 231.48 232.30 0.4%

2

3 1.61 1.59 1.4% 0.12 0.11 5.3% 84% 85% 1.6% 0.11 0.10 9.7% 53.80 52.97 1.6% 200.88 203.89 1.5%
4 2.43 2.44 0.3% 0.13 0.13 0.8% 93% 95% 2.0% 0.12 0.12 1.8% 64.43 63.44 1.6% 223.56 227.00 1.5%
5 3.35 3.35 0.1% 0.14 0.13 6.5% 97% 99% 1.5% 0.13 0.12 6.5% 76.95 75.18 2.4% 234.00 239.43 2.3%
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Table 3: Performance Measure of MSOP system with dedicated robots
Input Output:Performance Measure (Dedicated Class)

D
W

Ns V AQOP
SQOP

δQOP
AQRep

SQRep
δQRep

AQAisle
SQAisle

δQAisle
AUOP

SUOP
δUOP

AURep
SURep

δURep
AUAisle

SUAisle
δUAisle

AE[CTop] SE[CTop] δE[CTop] AE[CTrep] SE[CTrep] δE[CTrep] AXop SXop δXop AXrep SXrep δXrep

1 200

6 3.41 3.40 0.2% 0.78 0.77 1.7% 0.25 0.25 0.9% 96% 96% 0.5% 78% 77% 1.7% 22% 22% 1.4% 77.8 76.8 1.2% 114.9 112.3 2.3% 231.5 234.3 1.2% 31.3 32.1 2.3%

8 5.34 5.34 0.0% 0.78 0.77 1.6% 0.27 0.26 2.3% 100% 99% 0.5% 78% 78% 0.3% 23% 22% 4.2% 105.5 104.2 1.2% 115.1 114.2 0.7% 239.0 241.8 1.1% 31.3 31.5 0.6%

10 6.31 6.33 0.3% 1.72 1.72 0.0% 0.28 0.27 3.1% 100% 100% 0.0% 99% 99% 0.1% 24% 23% 3.3% 119.8 121.4 1.3% 181.7 189.3 4.0% 240.5 237.2 1.4% 39.6 38.0 4.1%

14 9.29 9.31 0.2% 2.71 2.71 0.1% 0.28 0.28 1.4% 100% 100% 0.0% 100% 100% 0.0% 24% 24% 0.0% 163.7 165.7 1.2% 262.6 265.4 1.1% 242.1 239.0 1.3% 41.0 40.7 0.9%

2 200

6 3.56 3.59 0.8% 0.80 0.80 0.3% 0.12 0.12 0.5% 97% 99% 1.5% 80% 80% 0.3% 11% 10% 10.0% 76.9 77.5 0.7% 112.9 111.8 0.9% 230.4 232.3 0.8% 32.0 32.2 0.5%

8 5.52 5.49 0.5% 0.80 0.80 0.2% 0.12 0.12 3.5% 100% 100% 0.0% 80% 80% 0.2% 12% 11% 4.6% 104.9 105.4 0.5% 112.2 113.3 1.0% 241.2 239.0 0.9% 32.0 31.8 0.9%

10 6.51 6.53 0.4% 1.75 1.76 0.5% 0.12 0.12 3.3% 100% 100% 0.0% 100% 99% 1.0% 12% 11% 8.1% 119.4 121.0 1.3% 179.8 189.9 5.3% 230.4 238.0 3.2% 37.4 37.9 1.2%

14 9.50 9.52 0.3% 2.74 2.75 0.3% 0.13 0.13 0.4% 100% 100% 0.0% 100% 100% 0.0% 12% 11% 9.0% 163.4 165.2 1.1% 261.5 263.5 0.7% 242.3 239.7 1.1% 41.4 41.0 1.0%

1 400

6 3.16 3.10 1.9% 0.75 0.75 0.5% 0.22 0.20 9.0% 95% 97% 2.4% 75% 74% 1.9% 20% 19% 2.9% 79.2 77.2 2.6% 119.3 120.3 0.8% 227.2 233.1 2.5% 30.2 29.9 1.1%

8 5.06 5.03 0.6% 0.75 0.76 0.9% 0.23 0.20 14.4% 99% 98% 0.7% 75% 75% 0.4% 20% 20% 1.5% 106.4 108.8 2.3% 119.5 120.5 0.8% 236.9 231.6 2.3% 30.1 29.9 0.8%

10 6.03 6.02 0.2% 1.68 1.68 0.2% 0.24 0.23 4.5% 100% 100% 0.5% 98% 96% 1.8% 21% 20% 5.6% 120.6 121.6 0.9% 184.3 190.9 3.5% 239.0 236.8 0.9% 39.2 37.7 4.1%

14 9.00 8.99 0.1% 2.66 2.67 0.4% 0.25 0.23 6.9% 100% 100% 0.0% 100% 100% 0.0% 21% 20% 7.2% 164.1 166.7 1.5% 264.2 278.9 5.3% 241.2 237.6 1.5% 41.0 38.7 6.0%

2 400

6 3.28 3.30 0.7% 0.77 0.77 0.3% 0.15 0.14 9.8% 96% 98% 2.5% 77% 77% 0.3% 14% 13% 9.2% 78.5 78.2 0.4% 117.2 119.2 1.7% 229.3 230.1 0.3% 30.6 30.2 1.3%

8 5.20 5.21 0.2% 0.77 0.77 0.3% 0.16 0.16 0.1% 99% 99% 0.2% 77% 76% 1.0% 15% 14% 4.9% 105.9 106.2 0.3% 117.3 119.4 1.8% 238.0 237.2 0.3% 30.6 30.1 1.5%

10 6.18 6.20 0.4% 1.70 1.70 0.0% 0.17 0.16 4.6% 100% 100% 0.1% 98% 96% 2.5% 15% 15% 1.6% 120.2 121.3 0.9% 182.9 191.2 4.3% 239.8 237.4 1.0% 39.2 37.7 4.2%

14 9.16 9.17 0.2% 2.69 2.60 3.3% 0.17 0.17 0.1% 100% 100% 0.0% 100% 100% 0.0% 15% 14% 10.3% 163.9 161.7 1.4% 263.3 264.3 0.4% 241.6 245.0 1.4% 41.0 40.9 0.4%

Table 4: Performance Measure of MSOP system with pooled robots
Input Output: Performance Measure (Pooled Class)

D
W

Ns V AQOP
SQOP

δQOP
AQRep

SQRep
δQRep

AQAisle
SQAisle

δQAisle
AUOP

SUOP
δUOP

AURep
SURep

δURep
AUAisle

SUAisle
δUAisle

AE[CTop] SE[CTop] δE[CTop] AE[CTrep] SE[CTrep] δE[CTrep] AXop SXop δXop AXrep SXrep δXrep

1 200

6 1.34 1.30 2.7% 3.31 3.40 2.7% 0.19 0.19 0.5% 67% 65% 2.8% 99% 98% 1.0% 17% 17% 0.1% 54.4 54.7 0.7% 321.5 323.9 0.7% 331.2 329.0 0.7% 11.2 11.1 0.7%

8 1.58 1.50 5.3% 5.02 5.19 3.3% 0.20 0.19 3.9% 69% 66% 3.8% 99% 98% 1.0% 17% 17% 2.6% 59.1 59.5 0.7% 464.1 476.8 2.7% 426.3 423.4 0.7% 7.8 7.5 2.8%

10 1.71 1.69 0.9% 6.89 6.90 0.2% 0.20 0.19 4.5% 69% 65% 5.7% 100% 100% 0.0% 18% 17% 2.9% 61.8 60.9 1.6% 625.9 638.7 2.0% 465.8 473.1 1.5% 11.5 11.3 2.1%

14 1.77 1.69 5.0% 10.83 10.65 1.7% 0.20 0.19 3.7% 68% 66% 3.4% 100% 100% 0.0% 17% 17% 2.2% 63.6 65.3 2.6% 976.0 966.8 1.0% 622.9 606.8 2.6% 11.1 11.2 0.9%

2 200

6 1.36 1.31 3.8% 3.41 3.50 2.6% 0.09 0.09 0.0% 67% 64% 5.0% 94% 96% 2.2% 8% 8% 0.0% 52.3 51.3 2.1% 326.2 349.9 6.8% 343.9 351.2 2.1% 11.0 10.3 7.2%

8 1.60 1.48 7.8% 5.14 5.25 2.0% 0.09 0.09 3.1% 69% 66% 4.0% 99% 98% 1.0% 9% 8% 8.9% 56.9 54.3 4.9% 471.8 485.6 2.8% 442.8 464.5 4.7% 7.6 7.4 2.9%

10 1.71 1.69 1.4% 7.02 7.10 1.1% 0.09 0.09 3.3% 69% 66% 4.1% 100% 100% 0.0% 9% 8% 9.0% 59.5 56.6 5.0% 635.2 682.3 6.9% 484.4 508.5 4.7% 11.3 10.6 7.4%

14 1.78 1.78 0.2% 10.97 10.88 0.8% 0.09 0.09 2.7% 68% 66% 3.4% 100% 100% 0.0% 9% 8% 8.2% 61.1 61.8 1.1% 986.4 987.2 0.1% 648.6 641.3 1.1% 10.9 10.9 0.1%

1 400

6 1.29 1.20 7.6% 3.12 3.15 0.9% 0.17 0.16 3.5% 66% 66% 0.2% 99% 99% 0.2% 15% 15% 0.5% 58.1 60.2 3.5% 311.9 315.3 1.1% 309.8 298.9 3.6% 11.5 11.4 1.1%

8 1.55 1.51 2.7% 4.80 4.81 0.3% 0.17 0.17 1.5% 68% 63% 8.5% 99% 99% 0.0% 16% 15% 3.9% 63.1 66.2 4.8% 449.9 471.2 4.5% 399.6 380.4 5.0% 8.0 7.6 4.8%

10 1.69 1.62 4.4% 6.64 6.66 0.3% 0.17 0.17 2.2% 69% 68% 1.0% 100% 100% 0.0% 16% 15% 4.5% 66.0 71.2 7.3% 609.2 621.3 1.9% 436.3 404.3 7.9% 11.8 11.6 2.0%

14 1.77 1.73 2.5% 10.57 10.60 0.3% 0.17 0.17 1.6% 68% 68% 0.5% 100% 100% 0.0% 16% 15% 3.8% 68.0 69.2 1.7% 957.7 960.3 0.3% 582.2 572.3 1.7% 11.3 11.2 0.3%

2 400

6 1.31 1.30 0.9% 3.20 3.21 0.3% 0.12 0.11 6.1% 67% 66% 0.8% 100% 97% 2.8% 11% 10% 9.0% 56.4 57.3 1.5% 315.5 321.7 1.9% 318.9 314.0 1.6% 11.4 11.2 2.0%

8 1.57 1.51 3.6% 4.90 4.91 0.3% 0.12 0.12 0.7% 68% 66% 3.7% 100% 99% 1.0% 11% 11% 2.0% 61.3 59.1 3.6% 456.0 466.8 2.3% 411.3 426.2 3.5% 7.9 7.7 2.4%

10 1.70 1.59 6.9% 6.75 6.79 0.5% 0.12 0.12 1.2% 69% 66% 4.1% 100% 100% 0.0% 11% 11% 2.4% 64.1 61.5 4.2% 616.7 624.0 1.2% 449.4 468.4 4.1% 11.7 11.5 1.2%

14 1.77 1.73 2.6% 10.69 10.70 0.1% 0.12 0.12 0.5% 68% 68% 0.4% 100% 100% 0.0% 11% 11% 1.7% 66.0 65.2 1.1% 966.2 963.2 0.3% 600.3 607.0 1.1% 11.2 11.2 0.3%
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The error in percentage deviations, δPk
of performance measure P at node k, with respect

to the simulation and analytical methods are calculated by the following expression:

δPk
=

∣

∣

∣

∣

APk
− SPk

SPk

∣

∣

∣

∣

× 100 (22)

where APk
is the value of the performance measure, P at node k obtained from the analytical

model and SPk
is the value of the performance measure, P at node k obtained from the

simulation model. A summary of input parameters for the experiments used to validate

the model is presented in Table 1 and Table 2. Note that the D
W ratio is set at two levels:

1 and 2; the number of aisles (A) is set at two levels: 8 and 10, the number of storage

locations (NS) is set at two levels: 200 and 400; and the number of drive units (robots,

V ) is varied at three levels: 3, 4, and 5 in the single-class model (with only order picking)

and 6, 8, 10, and 14 in the multi-class model (with both order picking and replenishment).

In all cases the simulation model took about 15 minutes to run on a high configuration

PC. In contrast, the analytical model took less than 15 to 20 seconds to run for the same

configuration. Hence, the analytical models can be very useful for quickly exploring various

alternatives in the large design space of a warehouse.

The maximum and the average percentage errors for all performance measures including

queue lengths, resource utilization, throughput, throughput times is about 10% and <5%

respectively. The errors are higher in some occasions because the absolute value of the

performance measure is itself very small.

In the next section, we present design insights based on the analysis of the three queueing

network models.

6.1 Insights for the Order Picking Queueing Network Model

For better exposition, we first compare the performance of the order pick system by storage

policy (random and closest open location storage strategy). It is expected that the closest

open location storage strategy would take less residence time in the aisles than the random

storage. The analysis results (provided in Table 2) shows that order pick operations with

closest open location storage policy takes about 1%-2% less residence time than the random

open location storage policy. Therefore, a system can gain a slightly higher throughput

capacity with the closest open location storage policy than random open location storage
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policy.

To study the effect of the number of storage locations, we fix the D
W ratio of the storage

area, storage strategy and number of robots V . It is expected that the travel times within

aisles (and hence expected throughput times) increase with an increase in the number of

storage locations (Table 2 shows that the cycle times E[CTop] increase when the number

of locations increase from 200 to 400), which results in the reduction in system throughput

X.

We analyze the D
W ratio which affects the performance of the MSOP based warehouse

system. With increase in the D
W ratio, the number of aisles increases. Therefore, the queue

lengths in front of aisles decrease and the waiting times reduce. However, the effect of

overall delay in aisles and cross-aisle is not clear because by increasing the number of aisles,

the service times on the cross-aisle also increase. In Table 2, we note that when the ratio of
D
W increases from 1 to 2, the robots take 1-2% less cycle times and warehouse throughput

per hour increase. In the case of random storage, with Ns = 200 locations and V = 3

robots, the throughput of a system X increases from 210 to 217 picks/hr when the D
W

increases from 1 to 2.

It is expected that the expected queue lengths QAisle at the aisles and the order pick

station QOP increases with the increase in the number of robots. This observation can be

confirmed by the results given in Table 2. In a closest open location storage policy, with

a fixed number of storage locations (200), D
W ratio=1, and 86-98% utilization of the order

pick station, it can be observed that by increasing the robots from 3 to 4 and then 5, the

queue lengths are also increasing at aisles and at order pick station which affects the cycle

time E[CTop] of a robot.

The effect of increasing the percentage of open locations has been found on throughput

and utilization in the random and closest open location storage policy. By considering a

fixed number of robots, in Figure 9, we observe that when the percentage of open locations

increases from 10-90%, the throughput in the random open location storage strategy re-

mains same throughout but the throughput increases in the closest open location storage

strategy. Since in the random storage, the service time (for any number of open locations) is

equal to the service time for two (one storage and one retrieval) randomly chosen locations

and therefore the throughput does not change as the number of open location increases.

Similarly, for the closest location, the two random locations are chosen from an aisle with
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Figure 9: System throughput: random vs. closest open location storage policy

only N − m + 1 locations (and thus the aisle travel distance gets shorter), and therefore

the throughput increases. Note that although open locations are not used efficiently in the

closest open location storage policy, the used locations are more close to the aisle entrance

which reduces the robot travel times.

6.2 Insights for the Multi-class Queueing Network Model

6.2.1 Dedicated class of robots for order picking and replenishment

Our observations on better system design with the dedicated robot classes are similar to

the single-class case. For instance, from Table 3, we see that by increasing the locations in

a warehouse, the waiting times at the aisles increase. This results in throughput reduction

for both order picking and replenishment classes. Likewise, from Table 3 with 200 location,

we observe that when the ratio of D
W increases from 1 to 2, the robots take about 1-3%

less throughput times and the system throughput increases from 1-3%. Similarly, with 400

locations, by increasing the D
W ratio from 1 to 2, the robots take 2-3% less cycle times and

results in 1-3% more throughput capacity. We observe that an increase in D
W ratio has a

marginal impact on the system performance measures.
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(a) (b)

Figure 10: Comparison of expected replenishment and order picking throughput times (a
and b) with dedicated and pooled robots

6.2.2 Pooled class of robots for order picking and replenishment

In this case, a robot can process both order picking and replenishment activity. From Table

4, it can be seen that the insights that hold for a single-class or a multi-class with dedicated

robots also hold true for the pooled robot system.

This work is motivated to the answer the question if pooled robots in usage perform better

than dedicated robots for order picking and replenishment activity.

From the numerical results, we see that dedicated robots take less throughput times than

the pooled robots for the order picking process whereas the dedicated robots that more

throughput times than the pooled robots for the replenishment process. In the pooled

classes, we use a 80% chance that the robots can come switch to the order picking process

and 20% chance that the robots switches to the replenishment process. Note that a pooled

resource allocation may result in more variability in the queue lengths at the order pick

and replenishment stations. Further, the replenishment station has a longer service time

requirements than the order pick service time. Therefore, pooled robot assignment to the

replenishment process results in two to three times more average waiting time than the

dedicated robot assignment (refer Tables 3 and 4). However, the pooled robot assignment

results in 30%-60% reduction in order pick throughput times in comparison to the dedicated

robot assignment.

In Figure 10, expected replenishment and order pick throughput times are compared for
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a system with six robots but different robot allocations. For instance, if the number of

robots dedicated to replenishment and order picking are 2 and 4 respectively, then we

compare the average throughput time measures with a pooled system where the robot

switches to replenishment and order picking with probability (2/6) and (4/6) respectively

after completing every process cycle. We see that for all set of robot allocations, the average

queue length at the order pick station is lower for the pooled case than the dedicated robot

case. However, the average queue length at the replenishment station is higher for the

pooled case than the dedicated case. Therefore the the overall waiting time at the order

pick station decreases in the pooled robot case, which decreases the overall throughput time

for order picking (upto 60% less).

7 Conclusion and Future Scope

In this paper, we present analytical models to estimate the performance measures of mobile-

shelves based order pick systems. Using these models, we analyze system performance

with alternative pod storage strategies and system operations with dedicated or pooled

robots. We see that although the open locations are not efficiently used in the closest open

location storage policy, the throughput time estimate in this policy is always less than the

throughput time estimate obtained using the random open location storage policy. Our

results show that the waiting times of robots are reduced in aisles with a closest open

location storage policy and the throughput per hour with a closest open location storage

policy is 1-3% higher than the random open location storage policy. Another important

design parameter is the warehouse shape factor, D
W ratio, which is defined as the ratio

between length and width, which is represented by the number of aisles and number of rack

locations, respectively, of the order picking system. We note that more congestion occurs in

systems with smaller warehouse shape factors because of increase in waiting times within

the aisles. We compared different design alternatives and recommend the system to be

built with many short aisles instead of a few long aisles. Finally, we also observe that by

using pooled robots instead of dedicated robots, the expected throughput time for order

picking reduces upto one-third of its initial value; however, the expected replenishment time

estimate increases upto three times.

We make multiple assumptions while developing the analytical models. Several of those
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assumptions, such as the probability of entering an aisle, storing the pod in the same

side of the aisle from which the next pod needs to be retrieved, etc. can be relaxed in a

straightforward fashion. Our model can also be extended to accommodate multiple pick

and replenishment stations, zones, and realistic travel of robots underneath the pods.
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