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Stochastische Beslissingstheorie

In vele praktische problemen moeten strategische beslissingen genomen worden zon-
der dat het effect van die beslissingen op voorhand exact bekend zijn. Markov
Beslissingstheorie biedt een raamwerk om problemen het hoofd te kunnen bieden
waarbij de te nemen beslissingen het verloop van een stochastisch proces kunnen
bëınvloeden. In dit vak zullen we naast de theorie ook een veelvoud aan (gestileerde)
toepassingsvoorbeelden de revue laten passeren. Vereiste voorkennis is de elemen-
taire theorie van Markov ketens en Markov processen. Aan de hand van voorbeelden
wordt de theorie van (semi-)Markov processen met beslissingen ontwikkeld.

De volgende onderwerpen zullen worden behandeld: stochastische dynamis-
che programmering voor problemen met een eindige planningshorizon; de opti-
maliteitsconditie van Bellman; maximalisatie van gemiddelde of verdisconteerde
verwachte opbrengst (oneindige horizon); de methodes van successieve approxi-
matie, policy iteratie, waarde-iteratie en lineaire programmering. Toepassingen van
de theorie komen van voorraad-, productie- en wachtrijsystemen. Aanbevolen tek-
stboeken zijn Derman [1], Howard [2], Putterman [3], Ross [4, Hoofdstuk 6] en
Tijms [5, Hoofdstuk 3].

Stochastic Decision Theory

In practice, decisions are often made without a precise knowledge of their impact on
future behavior of systems under consideration. The field of Markov Decision Theory
has developed a versatile approach to study and optimize the behavior of random
processes by taking appropriate actions that influence future evolution. Besides
theory, this course also contains many application examples. The course assumes
knowledge of basic concepts from the theory of Markov chains and Markov pro-
cesses. Guided by examples, the theory of (semi-)Markov processes with decisions
is presented.

The following topics are covered: stochastic dynamic programming in problems
with finite decision horizons; the optimality condition of Bellman; maximization of
average or discounted expected reward (infinite horizon); the methods of successive
approximation, policy iteration, value-iteration and linear programming. Applica-
tions are taken from inventory, production and queueing systems. Basic references
to introductory textbooks are Derman [1], Howard [2], Putterman [3], Ross [4,
Chapter 6] and Tijms [5, Chapter 3].

Rudesindo Núñez-Queija
November 1, 2009
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Chapter 1

Finite horizon decision
problems

In this chapter we shall treat stochastic decision problems defined over a finite
period. A finite planning horizon arises naturally in many decision problems. Some-
times the planning period is exogenously pre-determined. We shall see examples of
both cases.

This section also serves as an introduction into the basic concepts of Markov
decision theory and into notation that shall be used in the remainder. We begin by
examining an example.

1.1 Example: Investment

Suppose an investor has e10,000 available and must decide on how to invest it, so
as to maximize his expected returns. The investor may choose between investing all
of his capital either in stock from company A or in stock from company B. Investing
in company A renders a profit of 100% (i.e., a doubling of the investment) after one
year with probability 0.10. With probability 0.90, however, there is no profit after
one year, and the investor will get his e10,000 back. Company B has a higher risk
profile, but also renders higher expected returns. With probability 0.6 the investment
is doubled, whereas with probability 0.4 the investment is completely lost. Indeed,
the expected profit from investing e10,000 in company A is 0.10×10, 000 = 1, 000
euro and in company B it is 0.6× 10, 000 + 0.4× (−10, 000) = 2, 000 euro.

If not bankrupt, the investor can re-invest his money every year (each time
e10,000 due to the popularity of both investments), what is the best strategy for
the investor if his goal is to maximize the expected profit after five years?

In this example the planning horizon is exogenously given and equal to five
decision epochs. Clearly, the decisions in later years depend on the profit made
during the first year. A decision rule assigns a sequence of decisions (one for each
year) for each possible outcome of the process. While not bankrupt, the investor
must choose between the two possible investments. (In principle the investor could
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2 CHAPTER 1. FINITE HORIZON DECISION PROBLEMS

choose not to invest, but this is not an interesting option in this example, since
investment A implies no risk on the invested capital.) Every year the capital either
remains unchanged, increases by e10,000 or decreases by e10,000 (the last two
are only possible if the investor has not yet gone bankrupt). Thus, after T years
the capital can be either 0, 10,000, . . ., (T + 1) × 10, 000 euro. In principle, a
decision rule must return a decision at each stage for every possible sequence of
previous decisions and outcomes of the investments so far. For this simple example
this amounts to 640 possible combinations. Application of the technique of dynamic
programming, however, can drastically reduce the number of relevant decision rules.
This technique will be described more in detail in Section 1.3, but here we already
illustrate it for this example.

The key idea is to realize that we do know what to do at the last stage of the
decision sequence. If the investor has not gone bankrupt before the last decision
stage — let’s say he has a capital K4 ≥ 10, 000 euro — in order to maximize the
expected returns he should invest e10,000 in B, making the expected final capital
K4 +2, 000 euro. With this information we can also determine the optimal decision
at the previous to last decision stage. Suppose the capital at that point equals
K3 ≥ 10, 000 euro. Investing in A, leads to a capital of either K3 or K3 + 10, 000
euro. In both cases we know that in the next stage it is optimal to invest in B
which results in an expected profit of e2,000. Thus, the expected final capital if we
invest in A equals 0.9× (K3 +2, 000)+0.1× (K3 +10, 000+2, 000) = K3 +3, 000
euro. Next, we evaluate the expected final capital if investment in B is chosen in
the previous to last decision stage. The capital increases either to K3 + 10, 000
euro or decreases to K3 − 10, 000 euro. A distinction must be made between
K3 = 10, 000 euro and K3 ≥ 20, 000 euro, because with a capital of e10,000,
investment in B may lead to bankruptcy, disabling any future revenues. By similar
arguments as before we may conclude that the expected final capital after investing
in B in the previous to last decision stage equals 0.6 × (K3 + 10, 000 + 2, 000) +
0.4 × (K3 − 10, 000 + 2, 000) = K3 + 4, 000 euro if K3 ≥ 20, 000 and it equals
0.6× (10, 000+10, 000+2, 000)+0.4×0 = 13, 200 euro if K3 = 10, 000. In either
case, the expected return is larger than that of investing in A, thus at the previous
to last decision stage it is also optimal to invest in B, if not bankrupt.

Of course, we can repeat the same arguments to decide what to do yet one
decision stage earlier, and so on. The results of this process are listed in Table 1.1.
The table only reports information which is relevant to answer the question raised

capital maxE[KT |KT−n] (action)
KT−n n = 1 n = 2 n = 3 n = 4 n = 5
0 0 (-) 0 (-) 0 (-) 0 (-) 0 (-)
10,000 12,000 (B) 13,200 (B) 14,400 (B) 15,528 (A) 16,711.20 (A)
20,000 22,000 (B) 24,000 (B) 25,680 (B) 27,360 (B)
30,000 32,000 (B) 34,000 (B) 36,000 (B)
40,000 42,000 (B) 44,000 (B)
50,000 52,000 (B)

Figure 1.1: Optimal decisions and corresponding returns for T = 5
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(i.e., what is a good strategy over a period of 5 years starting with e10,000).
The n-th decision epoch before the evaluation moment is labeled with n (e.g., 1
corresponds to the last decision stage). The evaluation moment itself is marked
with 0. With Kn we denote the capital at stage n. To illustrate how to read
the table, let us focus on the following. If the investor has e20,000 with four
decision epochs remaining, the maximal attainable expected final capital equals
27, 360 = 0.6 × 36, 000 + 0.4 × 14, 400 and this is (expectedly) achieved if the
investor next chooses to invest in B. Indeed, with probability 0.6 there is a profit of
10, 000 after which the maximal expected final capital (over three years) is e36,000,
and with probability 0.4 a loss of e10,000 is incurred leaving us with a maximal
expected final capital of e14,400.

The answer to our problem can now be read from the table. The investor can
maximally expect to end up with e16,711.20. This maximum can (expectedly) be
achieved by investing e10,000 in A at the first stage.

1.2 The model

Before formalizing the technique illustrated in the example of the previous section,
we introduce some notation. We shall assume there is a stochastic (discrete-time)
process Xn, n = 0, 1, 2, . . . on a state space I. The probabilistic law according
to which the process evolves in time depends on a sequence of actions An, n =
0, 1, 2, . . ., with An ∈ A.

Assumption 1.2.1 The state space I is countable and the action space A is finite.

In general, it may be the case that, when Xn = i, only a subset of actions An ∈
Ai ⊂ A are allowed. We further specifically assume that

P{Xn+1 = in+1

∣∣ X0 = i0, . . . , Xn = in, A0 = a0, . . . , An = an}
= P{Xn+1 = in+1

∣∣ Xn = in, An = an} (1.1)
=: pan(in, in+1), i0, . . . , in+1 ∈ I, a0 ∈ Ai0 , . . . , an ∈ Ain .

This relation tells us that if the state at time n and the action taken at time n are
known, then the state at time n + 1 is independent of the history

Hn−1 := (X0, A0, . . . , Xn−1, An−1)

of the process before time n. Note that if pa(i, j) are independent of the action
a ∈ Ai for all i, j ∈ I, then the process X1, X2, . . . , is a Markov chain. If pa(i, j)
does depend on a but the actions A0 = a0, A1 = a1, . . . , are deterministically
known a priory, then X1, X2, . . . , is a time dependent Markov chain (with transi-
tion probabilities pan(i, j) at time n).

Remark 1.2.1 The notation used for the probability pa(i, j) and the random vari-
ables Xn and An shall also be adopted in the sequel. In general, superscripts refer
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to actions (or collections of actions), subscripts are time indexes and states are
function arguments. Note however that, e.g., pan(i, j) depends on time through
an, the action taken at time n.

Suppose a reward ra(i, j) is earned whenever the process Xn is in state i, action a
is taken and the process moves to state j. Then

ra(i) :=
∑

j∈I
pa(i, j) ra(i, j), (1.2)

represents the expected reward if action a is taken while in state i. In many problems,
the ra(i) may be specified without knowledge of ra(i, j).

To facilitate the analysis, we shall make the following technical assumption, that
is commonly satisfied in applications.

Assumption 1.2.2 The expected rewards are uniformly bounded, i.e., there exists
an R > 0 such that ‖ra(i)‖ < R for all i ∈ I, a ∈ Ai.

In this chapter we shall be interested in choosing the actions such that the ex-
pected total reward over a finite period, say T ∈ {1, 2, . . .} time units, is maximized.
In addition to ra(i, j), suppose a final (expected) reward q(i) is incurred at time T
if XT = i. We shall consider a large class of possible strategies for choosing the
subsequent actions A0, . . . , AT−1. Letting hn−1 = (i0, a0, . . . , in−1, an−1) denote
a particular history at time n, we define a strategy s as a sequence of functions

san
n (hn−1, in) ∈ (0, 1), n = 0, 1, . . . .

(For n = 0 this reads sa0
0 (i0).) If strategy s is used, then if Xn = i and Hn−1 =

hn−1 then at time n action a is taken with probability sa
n(hn−1, i). Naturally,

∑

a∈Ai

sa
n(hn−1, i) = 1,

for all n, hn−1 and i.

Remark 1.2.2 In general, the actions prescribed by a strategy are allowed to depend
on the entire history and they may be non-deterministic. So if Hn−1 and Xn are
known, for instance Hn−1 = hn−1 and Xn = in, but An is not yet known, then
Xn+1 may depend on the entire history too. By (1.1), as soon as An is known, for
instance An = an, the next state Xn+1 only depends on an and in.

If a strategy prescribes a deterministic action to be taken at all times for each
possible state and history then we call it a decision rule rather than a strategy.
More precisely, if for all n, hn−1 and in there exists precisely one a ∈ Ain such that

sa
n(hn−1, in) = 1,

then we define the equivalent (non-stationary) decision rule f = (f0, f1), where
f0, f1, . . ., is a sequence of functions such that

fn(hn−1, in) = a,
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precisely for that choice of a for which sa
n(hn−1, in) = 1. The decision rule f is

called a Markov decision rule if fn does not depend on hn−1, in which case we write
fn(hn−1, in) = fn(in). Additionally, a Markov decision rule is called stationary if
f0 = f1 = f2 = . . ..

Let us denote the expected total reward up to time T when starting at time 0
in state i and using strategy s by

V s
T (i) :=

T−1∑
n=0

Es
[
rAn(Xn, Xn+1)

∣∣ X0 = i
]
+ Es

[
q(XT )

∣∣ X0 = i
]
. (1.3)

The superscript in the expectation Es [·] reflects the fact that the strategy deter-
mines the probability law according to which the process (Xn, An) evolves. Because
of (1.2) we may write equivalently

V s
T (i) =

T−1∑
n=0

Es
[
rAn(Xn)

∣∣ X0 = i
]
+ Es

[
q(XT )

∣∣ X0 = i
]
. (1.4)

1.3 Bellman’s optimality condition

Suppose our goal is to maximize V s
T (i) over all strategies s. Bellman’s optimality

condition — or, equivalently, the stochastic dynamic programming optimality con-
dition — given in (1.5) paves the way to determining an optimal strategy, which
turns out to be a (non-stationary) decision rule!

Theorem 1.3.1 Let V ∗
0 (i) := q(i) and V ∗

n (i), n = 1, 2, . . ., be recursively given by

V ∗
n (i) := max

a∈Ai



ra(i) +

∑

j∈I
pa(i, j)V ∗

n−1(j)



 ,

then,
V ∗

n (i) = sup
s

V s
n (i), n = 0, 1, . . . , (1.5)

and any (there may be more than one) decision rule fn = (fn, fn−1, . . . , f1), deter-
mined by

fn(i) = argmaxa∈Ai



ra(i) +

∑

j∈I
pa(i, j)V ∗

n−1(j)



 ,

attains this optimal reward over the first n periods.

Proof A proof by induction on n is given in Appendix A.1. 2

Remark 1.3.1 We emphasize that, given an optimal strategy for n periods, to
determine an optimal strategy for the n + 1-period maximization, we only need to
compute fn+1 and then use the optimal strategy for the n-period optimization.
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Example 1.3.1 Consider a Markov Decision problem with two states (0 and 1)
and two decisions (1 and 2) in each state. The direct reward function is given
by r1(0) = 1, r2(0) = 0 and r1(1) = r2(1) = 2 and the transition probabilities
by p1(0, 0) = 1

2 , p1(1, 0) = 2
3 , p2(0, 0) = 1

4 en p2(1, 0) = 1
3 . We assume a finite

planning horizon and final costs q(0) = 2 and q(1) = 1.
We determine the minimal costs over a period with two decision epochs and the
corresponding optimal strategy:

V0(i) = q(i) ⇒ V0(0) = 2, V0(1) = 1.
V1(0) = min

{
1 + 1

2 · 2 + 1
2 · 1, 0 + 1

4 · 2 + 3
4 · 1

}
= 5

4 ;
V1(1) = min

{
2 + 2

3 · 2 + 1
3 · 1, 2 + 1

3 · 2 + 2
3 · 1

}
= 10

3 ;
V2(0) = min

{
1 + 1

2 · 5
4 + 1

2 · 10
3 , 0 + 1

4 · 5
4 + 3

4 · 10
3

}
= 2 13

16 ;
V2(1) = min

{
2 + 2

3 · 5
4 + 1

3 · 10
3 , 2 + 1

3 · 5
4 + 2

3 · 10
3

}
= 3 17

18 ;

Thus, the optimal strategy for two periods is: f1(0) = 2, f1(1) = 2, f2(0) = 2,
f2(1) = 1.

Example 1.3.2 Inventory control
A storage depot is used to keep production items in stock. At most 2 items can
be stored at the same time. At the end of each week, the inventory level (i.e., the
number of items in stock) is monitored and a decision is made about the number
of new items to be ordered from the production facility. An order that is placed
on Friday is delivered on Monday at 7.30 a.m. The cost of an order consist
of a fixed amount of e100 and an additional e100 per ordered item. Requests
for items arrive randomly at the storage depot: With probability 1

4 there is
no demand during a week, with probability 1

2 exactly one item is requested
during a week and with probability 1

4 the weekly demand equals 2 items. If
the weekly demand exceeds the inventory stock, it is fulfilled directly from the
production facility at the expense of e300 per item. The depot manager wishes
to minimize the expected ordering costs over a pre-determined finite horizon
planning period. The items in stock at the end of the planning period render
no value.

a) Formulate the above problem as a Markov Decision problem. (What are
the state space, action space, direct rewards, final rewards and transition
probabilities?)

b) Determine (for each possible initial state) the minimal expected cost over a
period of 2 weeks.

c) Suppose the value of each item in stock at the end of the planning period
of 2 weeks equals q euro. For which value(s) of q does the optimal strategy
change?
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1.4 Maximizing an entrance probability

So far we have been concerned with maximizing expected rewards. In many appli-
cations it is required that the probability of reaching some particular state i′ within
T time units be maximized. We shall see such an example below. If we define the
first entrance time into the state i′ by

τ(i′) = inf
n
{n ≥ 1 : Xn = i′} ,

our objective is thus to maximize

P s
T (i) := Ps{τ(i′) ≤ T

∣∣ X0 = i} (1.6)

over all strategies s and for all initial states i. At first sight it may not be obvious
that such a problem fits the framework described in Section 1.2. In principle, after
having entered the state i′, the process Xn may again move to other states. Since
the posterior evolution after having visited i′ does not alter the criterion function
P s

T (i), we may as well require that the process is absorbed in state i′ after having
visited it. More precisely, we may set pa(i′, i′) = 1 and pa(i′, i) = 0 for all actions
a ∈ Ai′ and all initial states i. Now take, for all i ∈ I, i 6= i′,

ra(i, i′) = 1, a ∈ Ai,

and ra(i, j) = 0 for all other choices of i, j and a. In particular ra(i′, i′) = 0 for
all a ∈ Ai′ . Obviously,

T−1∑
n=0

rAn(Xn, Xn+1)

equals 1 if Xn = i′ for at least one n = 1, . . . , T , and it equals 0 otherwise.
Therefore, we have

P s
T (i) = Es

[
T−1∑
n=0

rAn(Xn, Xn+1)
∣∣ X0 = i

]
=

T−1∑
n=0

Es
[
rAn(Xn, Xn+1)

∣∣ X0 = i
]
.

Taking q(i) = 0 for all i ∈ I and using the definition in (1.3) we have P s
T (i) = V s

T (i).
We can thus maximize P s

T (i) using Theorem 1.3.1.

Example 1.4.1 In the lectures, it is shown how to maximize the probability
of ending up with at least e20,000 for the investment problem described in
Section 1.1.

Example 1.4.2 Roulette
An amateur gambler goes to the casino to play roulette with a budget of e75.
In each round, he chooses to play either black or red. Therefore, in each round,
the probability of doubling the bet is 18/37 and the probability of losing the
bet is 19/37. Each round, the gambler places a bet with an (integer) amount of
euros. The goal is to maximize the probability of taking home at least e200.
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a) Formulate this game as a Markov Decision Problem, assuming a finite planning
horizon T . (What are the state space, the action space, the direct rewards,
the final rewards and the transition probabilities?)

b) Formulate the optimality equation for the probability of ending up with at
least e200.

c) Determine the optimal strategy for T = 2.

d) Write a computer program that computes the optimal strategies and the
corresponding maximal probabilities P (XT ≥ 200) for arbitrary values of
T ∈ {1, 2, 3, . . .}. (Also hand in a copy of the code.)

e) What is the optimal first action (for each possible initial bet) if T = 60?
(Print using computer program.)

f) Determine the (minimal) value of T such that, beyond this value the optimum
does not alter by further increasing T . (Indication: this value does not exceed
100.)

g) What is the maximum probability of going home with at least e200 (assuming
T = ∞)?

1.5 Towards an infinite horizon

If we let T →∞ in (1.6) the limit represents the probability of ever reaching state
i′ by using strategy s. Letting T → ∞ in (1.4), however, the limit in general
may not be well-defined. To start with, it is not clear what the “final” rewards
q(·) represent. But even if we take q(i) ≡ 0, there may be other problems. For
instance, if r(i) ≥ r for all i ∈ I and some r > 0. In that case V s

T (i) → ∞ when
T → ∞ for all initial states i and all strategies s. In such cases the total reward
criterion is not appropriate. In Chapters 2 and 3 we shall investigate two alternative
criterions: that of maximization of the average reward and the total discounted
rewards, respectively.



Chapter 2

Average reward criterion

One way of dealing with an infinite planning horizon is to maximize the average
reward. For a fixed strategy s we define the average reward after starting in state i
as

gs(i) := lim sup
T→∞

V s
T (i)
T

= lim sup
T→∞

1
T

T−1∑
n=0

Es
[
rAn(Xn)

∣∣ X0 = i
]
. (2.1)

(As argued in Section 1.5 we shall take q(·) ≡ 0.) In (2.1) we take the lim sup to
avoid technicalities regarding the existence of the limit. We further define

g∗(i) := sup
s

gs(i), (2.2)

and we are interested in finding a strategy (if it exists) that attains this maximum
average reward. We shall see that for a broad class of models not only such a
strategy exists, but that we can even find an optimal stationary decision rule. It is
also convenient to define

g∗ := sup
i∈I

g∗(i), (2.3)

which is the maximally attainable average reward if we are also allowed to choose
the initial state. As we shall see, often the average reward does not depend on the
initial state and we simply have g∗ ≡ g∗(i).
From Theorem 1.3.1 we know how to maximize the total reward over a finite period.
Naturally, this implies that we also know how to maximize the average reward over
a finite pre-determined period, since the two criterions are equivalent. The trouble
with determining what to do in the case of an infinitely long planning period is that
the decision rule (fn, fn−1, . . . , f1) is — in general — not stationary, i.e., in general
the decision rules fn and fm do not coincide when m 6= n. Still, for n large enough,
it seems that maximizing the total reward over n periods is a natural approximation
to maximize the eventual average reward. But this is true for any decision epoch!
Hence, repeatedly using fn, i.e., using the decision rule (fn, fn, fn, . . .) seems a
good thing to do in order to approximately attain the maximum average reward.

9
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Indeed, if limn→ fn exists, it can be shown that this limiting stationary decision rule
attains the maximal average reward. But why should such a rule exist? Indeed, in
general this may not be the case. The subject of this chapter is to show that for a
large class of problems there does exists an optimal stationary rule and to develop
techniques to compute that rule. In the first section we recall basic properties
of (stationary) Markov chains that have an important implication for the average
reward of stationary decision rules. Then — in Section 2.2 — we develop some
more intuition to guide us through the technical derivations in later sections.

2.1 Average reward using stationary decision rules

What can we say about the average reward when using the stationary decision
rule f = (f, f, f, . . .)? The stationarity of the decision rule implies that Xn, n =
0, 1, 2, . . . , is a Markov chain1 with transition probabilities

pf (i, j) := Pf{Xn+1 = j
∣∣ Xn = i} = P{Xn+1 = j

∣∣ Xn = i, An = f(i)}.
It shall be useful to also define the n-step transition probabilities

pf
n(i, j) := Pf{Xn = j

∣∣ X0 = i}.
By definition pf

1(i, j) = pf (i, j) and by conditioning on the state after one step we
have for n = 2, 3, . . .,

pf
n(i, j) =

∑

k∈I
pf (i, k) pf

n−1(k, j). (2.4)

(These recursive equations are known as the Chapman-Kolmogorov equations.)
Let T f (i, i0) be the expected time it takes Xn to reach some fixed reference

state i0 ∈ I starting from state i:

T f (i, i0) = Ef
[
inf {n ≥ 1 : Xn = i0}

∣∣ X0 = i
]
.

Assumption 2.1.1 The Markov chain with transition probabilities pf (i, j) is aperi-
odic and the reference state i0 and T f

0 < ∞ can be chosen such that T f (i, i0) < T f
0

for all i ∈ I. In particular, the reference state i0 is positive recurrent.

If this assumption is satisfied, there exists a unique stationary distribution πf (j), j ∈
I and we may write

πf (j) = lim
n→∞

Pf{Xn = j
∣∣ X0 = i},

independent of i. In particular, we have for the average reward that

gf (i) ≡ gf :=
∑

j∈I
πf (j)rf (j),

for all i ∈ I.
1We shall use results that were developed in the course Stochastic Processes 1 (Stochastis-

che Processen 1).
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2.2 Heuristics

Let the sequence fn again be generated from Bellman’s optimality equation. Sup-
pose that we are in the case where f∗ := limn→ fn exists and that f∗ = (f∗, f∗, f∗, . . .)
satisfies Assumption 2.1.1. Hence, gf∗(i) ≡ gf∗ is indeed independent of i. This has
interesting consequences on the rewards generated by using f∗ over finite periods.
Since the action space is finite (Assumption 1.2.1) and fn(i) → f∗(i), it must be
that there exists some Ni such that fn(i) = f∗(i) for all n > Ni. Let us assume
something stronger: there exists an N such that fn(i) = f∗(i) for all i and n > N .
So after N steps of Bellman’s optimization procedure, the policy maximizing the
right hand side of (1.5) is fixed at f∗. For n ≥ 1 we therefore have

V ∗
N+n(i) = rf∗(i) +

∑

j∈I
pf∗(i, j)V ∗

N+n−1(j)

= max
a∈Ai



ra(i) +

∑

j∈I
pa(i, j)V ∗

N+n−1(j)



 . (2.5)

Moreover,
V ∗

N+n(i) = V f∗
n (i) +

∑

j∈I
pf∗

n (i, j)V ∗
N (j), (2.6)

where pf∗
n (i, j) are the n-step transition probabilities that are recursively given by

the Chapman-Kolmogorov equations (2.4). In words, (2.6) says that the maximal
revenue over N + n periods is the sum of the revenue of the stationary rule f∗ over
the first n periods and the maximal revenue over the last N periods.

We know that V f∗
n (i) will grow approximately as n gf∗ , for all i. For n ≥ 1, let

us therefore look at the relative rewards over finite periods defined by

df∗
n (i, i0) := V f∗

n (i)− V f∗
n (i0), (2.7)

where i0 ∈ I is an arbitrary chosen reference state. Substituting (2.6) and (2.7)
into (2.5) gives

df∗
n (i, i0) + V f∗

n (i0)− V f∗
n−1(i0) +

∑

j∈I
pf∗

n (i, j)V ∗
N (j)

= max
a∈Ai



ra(i) +

∑

j∈I
pa(i, j)

(
df∗

n−1(j, i0) +
∑

k∈I
pf∗

n−1(j, k)V ∗
N (k)

)

(2.8)

and taking a = f∗(i) attains the maximum on the right hand side. We shall now
let n →∞ in this equation. Note that (see Section 2.1)

lim
n→∞

∑

j∈I
pf∗

n (i, j)V ∗
N (j) =

∑

j∈I
πf∗(j)V ∗

N (j),

independent of i (the interchange of the limit and the summation is allowed because
of Assumption 1.2.2). The corresponding terms on the left and right hand side of
(2.8) will therefore cancel out when n →∞.



12 CHAPTER 2. AVERAGE REWARD CRITERION

Let us then concentrate on the remaining terms. While V f∗
n (i) may grow un-

boundedly, the same need not hold for df∗
n (i, i0). In fact, we shall see in Section 2.4,

under the assumptions made so far, that

df∗(i, i0) := lim
n→∞

df∗
n (i, i0), (2.9)

is well defined and that, as one would expect intuitively (ultimately, each period
renders a reward equal to the average),

lim
n→∞

V f∗
n (i)− V f∗

n−1(i) = gf∗ ,

for all i ∈ I, in particular for i = i0. Let us assume that this is true and that,
when passing n → ∞ in (2.8), we may interchange the order of the limit and the
summation (in the right hand side). We then have

df∗(i, i0) + gf∗ = max
a∈Ai



ra(i) +

∑

j∈I
pa(i, j)df∗(j, i0)



 , (2.10)

and a = f∗(i) attains the maximum in the right hand side.

We have thus argued heuristically that if Bellman’s recursive procedure ulti-
mately gives a stationary decision rule, then the average revenue and the relative
rewards corresponding to this rule satisfy the functional equation (2.10). All entities
in this equation have a clear probabilistic interpretation and the relation itself says
that the optimal decision rule (assuming there exists one) has the property that if
one is forced to use rule f∗ in all subsequent steps, then one can not do better than
when using rule f∗ in the first step too.

In the remainder of this chapter we shall rigorously prove the assertions that
were loosely stated in this section. In all that follows, the intuition provided here
will play an important role.

2.3 Optimality condition

If one can find a solution to the functional equation (2.10), then this solution actually
determines a stationary decision rule that renders the maximal average reward. This
statement is formalized in the next theorem.

Theorem 2.3.1 [4, Thm. 6.17] If there exists a bounded function d(i), i ∈ I, and
a constant g such that, for all i ∈ I,

d(i) + g = max
a∈Ai



ra(i) +

∑

j∈I
pa(i, j) d(j)



 , (2.11)

then g = g∗(i) for all i ∈ I and any stationary decision rule f = (f, f, f, . . .) that
satisfies

f(i) ∈ argmaxa∈Ai



ra(i) +

∑

j∈I
pa(i, j) d(j)



 ,
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renders the maximally attainable average reward: gf (i) = g∗.

Proof See Appendix A.2. 2

So, if we can find a solution to (2.11) then we are done. From Section 2.2 we also
have an idea how to go about determining such a solution: by repeatedly applying
Bellman’s optimality equation. Doing exactly what is suggested in Section 2.2 is,
however, not feasible: when can we conclude that the decision rules will not change
anymore? In principle, even after many iterations giving the same rule, future rules
may still change at some point. It may even be the case that Bellman’s equation
does not give a converging sequence of rules, however many iterations we do. And
do the bounded function d(i) and the constant g of Theorem 2.3.1 exist at all?
These matters will be resolved in what follows.

2.4 Relative rewards of stationary decision rules

Before investigating the problem of finding an optimal strategy, we first study the
Markov chain induced by a stationary decision rule f in more detail. In Section 2.1
we saw that under Assumption 2.1.1 the average reward does not depend on the
initial state: gf (i) ≡ gf . In Section 2.2 we informally introduced the concept of
relative rewards. We shall now give a rigorous treatment of this important notion.
Again, suppose that Assumption 2.1.1 is satisfied. Let Rf (i, i0) be the expected
reward until the first visit to the reference state i0, starting from state i. Because of
Assumptions 1.2.2 and 2.1.1 we have ‖Rf (i, i0)‖ ≤ R T f

0 < ∞. Furthermore, by the
Renewal Reward Theorem2 (consecutive visits to the reference state i0 constitute
regeneration points):

gf =
Rf (i0, i0)
T f (i0, i0)

. (2.12)

The relative reward of state i over state i0 is now defined as

df (i, i0) := Rf (i, i0)− gf T f (i, i0). (2.13)

We shall see later that this definition is equivalent with that in (2.9), i.e., df (i, i0) =
limn→∞ df

n(i, i0), where df
n(i, i0) is defined similarly as in (2.7).

So df (i, i0) is the difference between the expected total reward that can be at-
tained while moving from i to i0 and the expected accumulated reward over a period
of equal (expected) length if exactly gf is incurred every time unit. The relative
reward of state i over an arbitrary state j can now be defined as3 df (i, i0)−df (j, i0).
Note that from (2.12) it follows that df (i0, i0) = 0.

2See the course Stochastic Processes 1 (Stochastische Processen 1).
3It is left to the reader to verify that if j is a positive recurrent state and j would have

been chosen as the reference state, then the relative reward of state i over state j would have
been the same: df (i, j) = df (i, i0)− df (j, i0).
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By conditioning on the state of the process after one transition, we may write

T f (i, i0) = 1 +
∑

j∈I\{i0}
pf (i, j)T f (j, i0), (2.14)

and similarly,

Rf (i, i0) = rf (i) +
∑

j∈I\{i0}
pf (i, j)Rf (j, i0). (2.15)

Multiplying (2.14) by gf , subtracting it from (2.15) and using that df (i0, i0) = 0
we have

df (i, i0) + gf = rf (i) +
∑

j∈I
pf (i, j)df (j, i0). (2.16)

Theorem 2.4.1 [5, Thm.3.1.1] If some bounded function d(i) and some constant
g satisfy

d(i) + g = rf (i) +
∑

j∈I
pf (i, j)d(j), (2.17)

then g = gf and d(i) = df (i, i0) + c for some constant c.

Proof The fact that g = gf follows from Theorem 2.3.1. The remainder of the
proof is given in Appendix A.3. 2

Theorem 2.4.1 says that, apart from a constant shift in the function df (i, i0),
the set of linear equations in (2.16) admits a unique solution. Note the similarity
between (2.11) which must be satisfied by an optimal stationary decision rule (if
it exists) and (2.16) which is satisfied by any stationary decision rule that meets
Assumption 2.1.1. These two functional equations give rise to two different algo-
rithms to compute (or approximate) an optimal strategy: the algorithm of Policy
Iteration and that of Successive Approximations . These algorithms are discussed
in Sections 2.5 and 2.6, respectively. In Section 2.7 we shall treat a third method
relying on linear programming. These algorithms are discussed without assuming
finiteness of I. We emphasize, however, that implementation of each of these al-
gorithms requires either a finite state space or truncation of the state space, except
in some special cases.

2.5 Policy Iteration

Suppose that we are given some stationary decision rule f and that we were able to
compute the average reward and the relative rewards corresponding to it by solv-
ing (2.16). What we actually want is a stationary decision rule that satisfies (2.11),
since such a rule will render the maximal average reward. The idea of Policy It-
eration (PI) is to simply apply the maximization procedure on the right hand side
of (2.11) to the relative values obtained from (2.16). Hopefully, the maximizing
decisions give us a better policy. This indeed turns out to be the case as is stated in
the next theorem. (This theorem can be sharpened as we shall see in Lemma 2.6.1.)
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Theorem 2.5.1 Let f = (f, f, f, . . .) be a stationary decision rule satisfying As-
sumption 2.1.1 with relative rewards df (i, i0). Let f ′ = (f ′, f ′, f ′, . . .) be a station-
ary decision rule also satisfying Assumption 2.1.1 and

f ′(i) ∈ argmaxa∈Ai



ra(i) +

∑

j∈I
pa(i, j) df (j, i0)



 . (2.18)

Then gf ′ ≥ gf .

Proof See Appendix A.4. 2

It is helpful to realize what (2.18) actually means. If we are forced to use f
from time 1 onward, then f ′ chooses the best actions at time 0. The theorem then
says that if we always use f ′, we are not worse off. Thus by improving on one step
we in fact improve on the total future!

Theorem 2.5.2 If f = f ′ satisfies (2.18) then f is a decision rule that gives the
maximal average reward.

Proof By (2.18) and (2.16), the average reward and the relative reward function
of f also satisfy (2.11). Hence, by Theorem (2.3.1) f is optimal. 2

This theorem says that if we can take f ′ = f in (2.18) then we have found an
optimal strategy. We thus have the following algorithm.

Policy Iteration (PI) Algorithm

This algorithm consists of the following steps.

0. Set n := 0. Choose any initial stationary decision rule f0.

1. Compute the average reward and the relative reward function of fn by solv-
ing (2.16).

2. Put f = fn and compute fn+1 = f ′ from (2.18), taking f ′ = f if possible.

3. If fn+1 = fn then this strategy is optimal, otherwise set n := n+1 and repeat
steps 1, 2 and 3.

Remark 2.5.1 Note that step 1 requires solving a set of linear equations. In actual
implementations of this algorithm, this is only feasible when the number of states
is not too large. In case of infinite state spaces, one usually needs to truncate the
state space.

Theorem 2.5.3 If we can not take f ′ = f in (2.18) then, one of the two following
holds

(i) gf ′ > gf ;



16 CHAPTER 2. AVERAGE REWARD CRITERION

(ii) df ′(i, i0) ≥ df (i, i0) for all i ∈ I and df ′(i, i0) > df (i, i0) for at least one
state i ∈ I.

Proof See Appendix A.5. 2

Corollary 2.5.1 If the number of states in I is finite, then the PI algorithm con-
verges in finitely many steps.

Proof In each step either a new rule is computed or the algorithm has converged. If
a new rule is computed then, because of Theorem (2.5.3), either the average reward
increases or the relative reward function increases strictly for one state and does not
decrease for other states. Hence, the algorithm can not return to the same rule
after more than one step. Since the number of states and the number of actions are
finite, also the number of stationary decision rules is finite. So after finitely many
steps the algorithm must converge. 2

In practice, the number of iterations needed for convergence of PI is usually
very small, especially if the initializing strategy is cleverly chosen. As noted in
Remark (2.5.1), however, step 1 in the iterations may be very expensive, or even
infeasible. In the next section we discuss an approach that is less sensitive to the
number of states but, in contrast with PI, may require a large number of iterations
to get satisfactory results.

Example 2.5.1 Inventory control (see Section 2.9 for solutions)
A class of expensive goods kept in stock at a warehouse are sold directly to
customers. The inventory level can be increased by placing a new order at the
beginning of each period. Lead times are negligible, so that we assume that any
order is available immediately. At most three items can be kept on stock. Items
that are not sold at the end of the period, can be kept for the next period, but
imply an inventory cost of h = 4 units per item. An order of n items costs
K + rn units; K = 4 and r = 2 are the fixed and the variable ordering costs.
If the demand in a period exceeds the number of items in stock, a penalty cost
of b = 12 units is incurred per item that can not be delivered. The demands in
subsequent periods form a sequence of independent and identically distributed
random variables. Each period, the demand equals 0, 1, 2 or 3 items; each
of these possibilities occurs with probability 1

4 . Future costs of lost demand is
already accounted for in the penalty cost p, so that the goal is to minimize the
average cost per period.

(Hint to simplify the calculations: If the i-th and j-th rows of the matrix B
are identical and y = z + By then the column vectors y and z satisfy yi − zi =
yj − zj .)

a) Formulate this problem as a Markov Decision Problem: Describe the state
space and the possible actions; determine the direct costs and the transi-
tion probabilities.
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b) Suppose the stock level is increased to its maximum level of 3 items at
the beginning of each period (if there are already 3 items in stock, then
no order is placed). What are the average cost and the relative values of
this strategy?

c) Do one step of the policy iteration algorithm, starting with the strategy
described in question b. It suffices to determine the new strategy. (The
average costs and the relative values of the new strategy need not be
determined.)

d) Show that it is optimal to order 3 items when there is no item in stock, 2
items when there is 1 item in stock, and that no order should be placed if
there are 2 (or 3) items in stock.

Example 2.5.2 Machine repair
A production facility has 3 machines. If a machine starts up correctly in the
morning, it renders a daily production of 1 euro. A machine that does not start
up correctly needs to be repaired. A visit of a repair man costs 3 euro per day.
The repair man repairs all broken machines in the same day (the repair cost is
3 euro, independent of the number of machines repaired). A machine that has
been repaired always starts up correctly the next day. The probability distribu-
tion of the number of machines that start up correctly the next day depends on
the number of presently working machines. This probability distribution is given
in the table below, where m stands for the number of (presently) working ma-
chines and n stands for the number of those that start up correctly the next day.

m n = 0 n = 1 n = 2 n = 3
1 1

2
1
2 0 0

2 1
3

1
3

1
3 0

3 1
4

1
4

1
4

1
4

Example: If there are m = 2 machines working today, then the probability that
exactly one of those 2 (n = 1) starts up again the next morning (and the other
does not) equals 1

3 .

a) Formulate this problem as a Markov Decision Problem: Describe the state
space and action space; determine the direct rewards/costs and the transition
probabilities.

b) Suppose it is decided that no machine should ever be repaired. What are the
average rewards and corresponding relative values?

c) Apply the policy iteration algorithm once, starting with the strategy in part
b. It is sufficient to determine the new strategy. (The average rewards and
relative values corresponding to that strategy need not be determined.)

d) Show that it is optimal to only let the repair man come when all machines
are broken.
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2.6 Successive Approximation

The Successive Approximation (SA) algorithm is inspired by (2.11) alone, or, in
fact, by Bellman’s optimality equation which underlies (2.11).

Successive Approximation Algorithm

0. Set n := 0. Choose an ε > 0 and any bounded function v0(i), i ∈ I. (A
common choice is v0(i) ≡ 0.)

1. Compute

vn+1(i) := max
a∈Ai



ra(i) +

∑

j∈I
pa(i, j)vn(j)



 (2.19)

and let

fn+1(i) ∈ argmaxa∈Ai



ra(i) +

∑

j∈I
pa(i, j)vn(j)



 . (2.20)

2. Let Mn := maxi∈I {vn(i)− vn−1(i)} and mn := mini∈I {vn(i)− vn−1(i)}.
Stop the algorithm if Mn −mn < ε. Otherwise set n := n + 1 and repeat
steps 1, and 2.

Choosing v0(i) ≡ 0 has the advantage that we can interpret vn(i) as the maximal
reward over n periods when starting in state i (and using a — possibly non-stationary
— decision rule determined by Bellman’s optimality equation (1.5). If v0(i) 6= 0
for some i, we may still use this interpretation if we introduce (artificial) “final”
rewards q(i) := v0(i), i ∈ I as in Chapter (1). Thus, SA does exactly what
we argued heuristically in Section 2.2, but now we shall prove that, under some
conditions, this procedure indeed converges to an optimal stationary decision rule.
Additionally, SA provides bounds on the average reward of fn = (fn, fn, fn, . . .)
obtained in the n-th iterate, as is shown in the next theorem.

Theorem 2.6.1 [5, Thm. 3.4.1] Let vn(i) be obtained from (2.19) and fn(i)
from (2.20). Let Mn and mn be as in the SA algorithm. If fn = (fn, fn, fn, . . .)
satisfies Assumption 2.1.1 then

mn ≤ gfn ≤ g∗ ≤ Mn,

and mn is non-decreasing and Mn is non-increasing.

Proof See Appendix ??. 2

The proof of Theorem 2.6.1 uses the next technical lemma, which is a stronger
statement then that of Theorem 2.5.1.
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Lemma 2.6.1 [5, Thm. 3.2.1] Let f = (f, f, f, . . .) be a stationary decision rule sat-
isfying Assumption 2.1.1 and suppose that, for some constant g and some bounded
function v(i), i ∈ I,

rf (i) +
∑

j∈I
pf (i, j) v(j) ≥ v(i) + g, i ∈ I,

then gf ≥ g. Similarly, if

rf (i) +
∑

j∈I
pf (i, j) v(j) ≤ v(i) + g, i ∈ I,

then gf ≤ g.

Proof See Appendix ??. 2

Example 2.6.1 A two-state MDP (see Section 2.9 for solutions)
Consider a Markov Decision Problem with two states (0 and 1) and two actions
(1 and 2) in each state. The direct-cost function is given by r1(0) = 1, r2(0) =
0 and r1(1) = r2(1) = 2 and the transition probabilities are p1(0, 0) = 1

2 ,
p1(1, 0) = 2

3 , p2(0, 0) = 1
4 and p2(1, 0) = 1

3 . For a finite planning horizon, the
final costs are q(0) = 2 and q(1) = 1.

a) Determine the minimum cost over a period with two decision epochs.
What is the corresponding optimal strategy?

Now suppose we want to minimize the average cost for an infinite planning
horizon. (Naturally, there are no final rewards.)

b) Find the strategy corresponding to the second iteration of the successive
approximation algorithm. Also determine the corresponding upper and
lower bounds for the average cost.

c) Determine the average cost and the corresponding relative values of the
strategy found in part b.

d) Carry out one step of the policy iteration algorithm, starting with the
strategy of part b.
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Example 2.6.2 Drill platform
The maximum daily output of a drill platform in the North sea is 10 million euros
per day. For security reasons the process is paused at night. It is possible that
the interruption leads to pollution of the installation, giving a daily production
of only 5 million euro. If that’s the case it is possible to clean the installation, at
the cost of loosing the production of one day. The cleaning costs are negligible.

The probability that the installation is polluted after a day of maximum
production is 1

3 (and with probability 2
3 the installation can work at full capac-

ity). A polluted installation which is not cleaned, remains polluted. Cleaning
the installation has the desired effect with probability 1

2 (the installation then
works at full capacity the next day), but with probability 1

2 the installation re-
mains polluted (the next day it can be decided again to clean the installation).
The aim is to maximize the average output.

a) Formulate this problem as a Markov decision problem: Describe the state and
action spaces and give the transition probabilities and direct rewards.

b) Carry out one step of the successive approximation algorithm. Give the cor-
responding candidate strategy, as well as lower and upper bounds for the
optimal rewards.

c) Explain whether the algorithm will converge in this example. Motivate your
answer by discussing possible problems with this algorithm.

d) Compute the optimal strategie and the corresponding maximum reward (nu-
merically, using a computer programm).

2.7 Linear Programming Approach

We now discuss a third approach to compute optimal strategies using a Linear
Programming formulation (LP). Let us concentrate on a fixed stationary randomized
strategy s = (s, s, s, . . .) where sa(i) is the probability of choosing action a in state
i. Clearly, any stationary decision rule f = (f, f, f, . . .) falls within this class of
strategies, specifically by taking sf(i)(i) = 1 and sa(i) = 0 for all a 6= f(i). Like
stationary decision rules, a stationary randomized strategy gives rise to a Markov
chain Xn with stationary transition probabilities

ps(i, j) =
∑

a∈Ai

sa(i)
∑

j∈I
pa(i, j).

Similar to Section 2.1, we define T s(i, i0) as the expected time it takes Xn to reach
some fixed reference state i0 ∈ I starting from state i:

T s(i, i0) = Es
[
inf {n ≥ 1 : Xn = i0}

∣∣ X0 = i
]
.

The following parallels Assumption 2.1.1.
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Assumption 2.7.1 The Markov chain with transition probabilities ps(i, j) is aperi-
odic and the reference state i0 and T s

0 < ∞ can be chosen such that T s(i, i0) < T s
0

for all i ∈ I.

Naturally, if this assumption is satisfied, there exists a unique stationary distribution
πs(j), j ∈ I, which is the unique function satisfying

∑
j∈I πs(j) = 1 and the

balance equations

πs(j) =
∑

i∈I
πs(i) ps(i, j). (2.21)

When using a fixed stationary randomized strategy satisfying Assumption 2.7.1 we
can also define the fraction of time points that Xn is in state i and action a is
chosen:

πs(i, a) := πs(i) sa(i), i ∈ I, a ∈ Ai. (2.22)

Naturally, πs(i) =
∑

a∈Ai
πs(i, a). Similar to (2.21) we have the following set of

equations ∑

a∈Aj

πs(j, a) =
∑

i∈I

∑

a∈Ai

πs(i, a)pa(i, j).

The average reward satisfies

gs(i) ≡ gs :=
∑

j∈I
πs(j)rs(j) =

∑

j∈I

∑

a∈Aj

πs(j, a)ra(j),

for all i ∈ I. An average reward maximizing stationary randomized strategy can be
obtained from the following LP.

Linear Program Formulation

max
x(i,k):i∈I,k∈Ai

∑

j∈I

∑

a∈Aj

x(j, a)ra(j)

subject to ∑

a∈Aj

x(j, a) =
∑

i∈I

∑

a∈Ai

x(i, a)pa(i, j), j ∈ I
∑

i∈I

∑

a∈Ai

x(i, a) = 1

x(i, a) ≥ 0.

The object value returned by this program is the maximally attainable average re-
ward. The corresponding optimal solution x∗(i, a) can be decomposed into an
optimal stationary randomized strategy s = (s, s, s, . . .) and the corresponding sta-
tionary distribution:

sa(i) :=
x(i, a)∑

k∈Ai
x(i, k)

,

πs(i) =
∑

a∈Ai

x(i, a). (2.23)
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In fact, there exists an optimal solution x∗(i, a) which has the property that for each
i there is exactly one a ∈ Ai such that x∗(i, a) = 1 and x∗(i, k) = 0 for all other
k ∈ Ai. This of course is a consequence of the results in Section 2.5, but it can
also independently be proved by standard linear programming theory: the optimum
is attained for at least one basic solution. A basic solution can be shown to have
x∗(i, a) = 1 for some a ∈ Ai and x∗(i, k) = 0 for all other k ∈ Ai.

The strength of LP compared to PI and SA is its ability to incorporate restrictions
on the allowed strategies. For instance, if it is not allowed that the process Xn

resides in state i more than a fraction ε of the time, then we can insert the restric-
tion

∑
a∈Ai

x(i, a) ≤ ε into the LP formulation. The program will then render an
optimal stationary randomized strategy (if it exists) under this additional restric-
tion. Neither the PI algorithm, nor the SA algorithm are able to cope with such a
restriction! Note also that in this case, it may be so that no stationary decision rule
attains the same maximum average reward as the optimal randomized strategy.

The computational effort of LP in finding an optimal solution is comparable to that
of PI. Like PI, in each step LP needs to solve systems of linear equations of the
same size as the state space.

Example 2.7.1 Two-state MDP (revisited)
Consider again Example 2.6.1. The LP formulation in this case is as follows.
Let x(i, a) be the long-run fraction of periods that the state is i and action a is
chosen. Then, we can obtain the maximum average reward from

max
x(0,1),x(0,2),x(1,1),x(1,2)

x(0, 1) + 2x(1, 1) + 2x(1, 2)

subject to

x(0, 1) + x(0, 2) =
1
2
x(0, 1) +

1
4
x(0, 2) +

2
3
x(1, 1) +

1
3
x(1, 2)

x(1, 1) + x(1, 2) =
1
2
x(0, 1) +

3
4
x(0, 2) +

1
3
x(1, 1) +

2
3
x(1, 2)

x(0, 1) + x(0, 2) + x(1, 1) + x(1, 2) = 1
x(0, 1), x(0, 2), x(1, 1), x(1, 2) ≥ 0.

It may be verified that solving this LP indeed gives the same solution as with in
Example 2.6.1. Suppose now that it is not allowed to take action 2 in more than
10% of the decision epochs. This restriction can be incorporated by adding the
constraint

x(0, 2) + x(1, 2) ≤ 1
10

to the LP.
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2.8 Generalizations

We have concentrated on the case where stationary decision rules give rise to a
Markov chain with one positive recurrent class. When this is not satisfied, the
framework does not immediately brake down. However, modifications are needed.
For instance, the PI algorithm then requires an additional step that first selects the
actions that give rise to the highest average reward. Then the ordinary step 2 is
carried out among these actions. Also, the SA and LP approaches need modifica-
tion. In particular, the lower and upper bounds in the SA algorithm may no longer
converge to the same value, thus invalidating one of the most powerful properties
of this algorithm. In order to apply the LP approach, additional equations need to
be added to the linear program. A rigorous treatment of these extensions is beyond
the scope of this course, but some of these issues receive attention either in the
lectures or the assignments.

Example 2.8.1 Successive approximation and policy iteration
Consider a stochastic process Xn, n = 0, 1, 2, . . . with state space {1, 2, 3}. In
states 2 and 3 only one action is possible. The following transition probabil-
ities and direct rewards correspond to this “action”: p1(2, 3) = p1(3, 2) = 1,
r1(2) = 10 and r1(3) = 14. In state 1 there are two possible actions with
p1(1, 1) = 1, r1(1) = 11 and r2(1) = 6. In addition it is known that p2(1, 1) < 1.
(If necessary you may make additional assumptions, e.g., p2(1, 1) = 0) or even
p2(1, 2) = 1.)

a) Formulate the algorithms of successive approximation (SA) and policy itera-
tion (PI) for this specific problem.

b) Show that the decision rules generated by the SA algorithm do not converge
to an optimal rule.

c) Apply the PI algorithm to this problem.

2.9 Solutions to selected exercises

Example 2.5.1 Inventory control

There are two ways to interpret inventory cost: charge the expected cost for the
current period, or charge the cost for the inventory of the previous period. Note
that for the average optimality criterion this does not make a difference since all
periods are equally important (with discounted costs it would matter). We start
with the first.
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Alternative 1

a) State at the beginning of period n: Xn = number of items in stock ∈
{0, 1, 2, 3}.
Action in state i: number of items ordered ∈ Ai = {0, 1, . . . , 3− i}.
In general ra(i) = hE[(i + a −D)+] + K1a>0 + ra + bE[(D − i − a)+] =
4E[(i+a−D)+]+4·1a>0+2a+12E[(D−i−a)+]. Note that E[(D−i−a)+] =
3/2, 3/4, 1/4, 0 if i + a = 0, 1, 2, 3; and E[(i + a −D)+] = 0, 1/4, 3/4,
3/2 if i + a = 0, 1, 2, 3;
So r0(i) = 18, 10, 6, 6, for i = 0, 1, 2, 3; r1(i) = 16, 12, 12, for i = 0, 1, 2;
r2(i) = 14, 14, for i = 0, 1; r3(i) = 16.

P 0 =




1 0 0 0
3/4 1/4 0 0
1/2 1/4 1/4 0
1/4 1/4 1/4 1/4


 ; P 1 =




3/4 1/4 0 0
1/2 1/4 1/4 0
1/4 1/4 1/4 1/4
? ? ? ?


 ;

P 2 =




1/2 1/4 1/4 0
1/4 1/4 1/4 1/4
? ? ? ?
? ? ? ?


 ;P 3 =




1/4 1/4 1/4 1/4
? ? ? ?
? ? ? ?
? ? ? ?




b) f = (3, 2, 1, 0), rf = (16, 14, 12, 6), P f =




1/4 1/4 1/4 1/4
1/4 1/4 1/4 1/4
1/4 1/4 1/4 1/4
1/4 1/4 1/4 1/4


.

Because of the structure we immediately see that each of the four states
occurs with equal probability, so gf = 1/4(16 + 14 + 12 + 6) = 12. The
relative rewards also follow easily (using the hint): df = (0,−2,−4,−10).

c) f ′(0) = arg min{18 + 0, 16− 1/2, 14− 3/2, 16− 4} = 3;
f ′(1) = arg min{10− 1/2, 12− 3/2, 14− 4} = 0;
f ′(2) = arg min{6− 3/2, 12− 4} = 0;
f ′(3) = 0.

d) f = (3, 2, 0, 0), rf = (16, 14, 6, 6), P f =




1/4 1/4 1/4 1/4
1/4 1/4 1/4 1/4
1/2 1/4 1/4 0
1/4 1/4 1/4 1/4


.

Using the hint we already know that if df (0) = 0 then df (1) = −2 and
df (3) = −10. Using the standard equations: gf = 11+1/8, df = (0, 2,−7−
1/2, 2). Apply the policy improvement step once:
f ′(0) = arg min{18 + 0, 16− 1/2, 14− 1/4 ∗ 19/2, 16− 1/4 ∗ 39/2} = 3,
f ′(1) = arg min{10− 1/2, 12− 1/4 ∗ 19/2, 14− 1/4 ∗ 39/2} = 2,
f ′(2) = arg min{6− 1/4 ∗ 19/2, 12− 1/4 ∗ 39/2} = 0,
f ′(3) = 0.
The policy does not change; so it is optimal.
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Alternative 2
Now we charge the cost for the inventory of the previous period.

a) State at the beginning of period n: Xn = number of items in stock ∈
{0, 1, 2, 3}.
Action in state i: number of items ordered ∈ Ai = {0, 1, . . . , 3− i}.
In general ra(i) = hi + K1a>0 + ra + bE[(D − i − a)+] = 4i + 4 · 1a>0 +
2a + 12E[(D − i− a)+], and E[(D − i− a)+] = 3/2, 3/4, 1/4, 0 if i + a =
0, 1, 2, 3.
So r0(i) = 18, 13, 11, 12, for i = 0, 1, 2, 3; r1(i) = 15, 13, 14, for i = 0, 1, 2;
r2(i) = 11, 12, for i = 0, 1; r3(i) = 10.

P 0 =




1 0 0 0
3/4 1/4 0 0
1/2 1/4 1/4 0
1/4 1/4 1/4 1/4


 ; P 1 =




3/4 1/4 0 0
1/2 1/4 1/4 0
1/4 1/4 1/4 1/4
? ? ? ?


 ;

P 2 =




1/2 1/4 1/4 0
1/4 1/4 1/4 1/4
? ? ? ?
? ? ? ?


 ; P 3 =




1/4 1/4 1/4 1/4
? ? ? ?
? ? ? ?
? ? ? ?




b) f = (3, 2, 1, 0), rf = (10, 12, 14, 12), P f =




1/4 1/4 1/4 1/4
1/4 1/4 1/4 1/4
1/4 1/4 1/4 1/4
1/4 1/4 1/4 1/4


.

Because of the structure we immediately see that each of the four states
occurs with equal probability, so gf = 1/4(10 + 12 + 14 + 12) = 12. The
relative rewards also follow easily (using the hint): df = (0, 2, 4, 2).

c) f ′(0) = arg min{18 + 0, 15 + 1/2, 11 + 3/2, 10 + 2} = 3;
f ′(1) = arg min{13 + 1/2, 13 + 3/2, 12 + 2} = 0;
f ′(2) = arg min{11 + 3/2, 14 + 2} = 0;
f ′(3) = 0.

d) f = (3, 2, 0, 0), rf = (10, 12, 11, 12), P f =




1/4 1/4 1/4 1/4
1/4 1/4 1/4 1/4
1/2 1/4 1/4 0
1/4 1/4 1/4 1/4


.

Using the hint we already know that if df (0) = 0 then df (1) = 2 and
df (3) = 2. Using the standard equations: gf = 11 + 1/8, df = (0, 2, 1/2, 2).
Applying the policy improvement step once, the policy does not change; so it
is optimal. 2

Example 2.6.1 A two-state MDP

a) V0(i) = q(i) ⇒ V0(0) = 2, V0(1) = 1.
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V1(0) = min
{
1 + 1

2 · 2 + 1
2 · 1, 0 + 1

4 · 2 + 3
4 · 1

}
= 5

4 ;

V1(1) = min
{
2 + 2

3 · 2 + 1
3 · 1, 2 + 1

3 · 2 + 2
3 · 1

}
= 10

3 ;

V2(0) = min
{
1 + 1

2 · 5
4 + 1

2 · 10
3 , 0 + 1

4 · 5
4 + 3

4 · 1
3

}
= 2 13

16 ;

V2(1) = min
{
2 + 2

3 · 5
4 + 1

3 · 1
3 , 2 + 1

3 · 5
4 + 2

3 · 10
3

}
= 3 17

18 ;

Optimal strategy for two periods: f1(0) = 2, f1(1) = 2, f2(0) = 2, f2(1) = 1.

b) There are two possibilities:

1. The initial value function of the SA algorithm is may be chosen arbitrarily;
by choosing V0 = q we can conclude from part a) that the corresponding
strategy is f2, with f2(0) = 2 and f2(1) = 1.
Since V2(0)−V1(0) = 1 9

16 and V2(1)−V1(1) = 11
18 , we have an upper bound

M2 = 1 9
16 and a lower bound m2 = 11

18 for the average cost.

2. If one chooses the standard initialization V0(0) = V0(1) = 0, one needs
to carry out again the same steps as in a). V1(0) = 0, V1(1) = 2, V2(0) =
3
2 , V2(1) = 2 2

3 ; the strategy then becomes f2(0) = 2 and f2(1) = 1 (i.e., the
same strategy as above).
Now V2(0) − V1(0) = 3

2 and V2(1) − V1(1) = 2
3 , so that the upper bound

is M2 = 3
2 and the lower bound is m2 = 2

3 . (I.e., in this case the standard
initialization gives sharper upper and lower bounds.)

c) Strategy f = f2 =
(

2
1

)
, P f =

(
1
4

3
4

2
3

1
3

)
, rf =

(
0
2

)
.

The relative values and average rewards satisfy

d(0) + g = 0 +
1
4
d(0) +

3
4
d(1),

d(1) + g = 2 +
2
3
d(0) +

1
3
d(1).

d(0) := 0 ⇒ g = 3
4d(1) ⇒ (

1 + 3
4 − 1

3

)
d(1) = 2 ⇒ d(1) = 24

17 ⇒ g = 18
17 .

d) f ′(0) ∈ argmin
{
1 + 1

2 · 0 + 1
2 · 24

17 , 0 + 3
4 · 24

17

}
= argmin

{
112

17 , 18
17

}
= {2},

so that f ′(0) = 2;
f ′(1): min

{
2 + 2

3 · 0 + 1
3 · 24

17 , 2 + 1
3 · 0 + 2

3 · 24
17

}
= {1} ⇒ f ′(1) = 1.

(Since f = f ′ we may conclude that f is optimal.) 2
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Discounted rewards

A second approach to handle an infinite planning horizon is to maximize the total
discounted expected reward, which for a fixed strategy s and initial state i is defined
as

V s
α(i) :=

∞∑
n=0

αnEs
[
rAn(Xn)

∣∣ X0 = i
]
. (3.1)

The parameter α ∈ (0, 1) is a fixed pre-determined discount factor. We are inter-
ested in determining

V ∗
α (i) := sup

s
V s

α(i), (3.2)

and a strategy that attains this maximal discounted reward, if it exists.

3.1 Fixed Stationary Decision Rule

Before focussing on the maximization problem (3.2), we first concentrate on the dis-
counted rewards when using a fixed decision rule f . As we shall see in Theorem 3.2.1
there exists a decision rule f∗ that attains the optimal reward, i.e., V f∗

α (i) = V ∗
α (i).

For a fixed decision rule f and a bounded function v(i), i ∈ I, we define the
mapping T fv of v(·) as

(T f
αv)(i) := rf (i) + α

∑

j∈I
pa(i, j)v(j), i ∈ I, (3.3)

and the n-th, n = 2, 3, . . ., iterate of this mapping is denoted by

(T f
α,nv)(i) := rf (i) + α

∑

j∈I
pa(i, j)(T f

α,n−1v)(j), i ∈ I. (3.4)

The mapping T f
α and its iterates have the following important properties:

Lemma 3.1.1 If u(·) and v(·) are two bounded functions on I then

27
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(i) (Monotonicity) If u(i) ≤ v(i) for all i ∈ I then (T f
αu)(i) ≤ (T f

αv)(i) for all
i ∈ I;

(ii) (Convergence) limn→∞(T f
α,nv)(i) = V f

α(i) for all i ∈ I;

(iii) (Unique fixed point) v(i) = V f
α(i) is the unique solution to the functional

equation (T f
αv)(i) = v(i) for all i ∈ I.

Proof Discussed at the lectures. 2

Lemma 3.1.1 has the following corollary which parallels Theorem 2.5.3 in the
average reward criterion. The corollary states that, if a stationary decision rule f ′

improves on a stationary decision rule f in one step then f ′ attains at least the same
discounted rewards as f for all states and has higher discounted rewards for at least
one state. In other words: f ′ really improves on f .

Corollary 3.1.1 Suppose that the stationary decision rules f and f ′ are such that
(T f ′

α V f
α)(i) ≥ V f

α (i) for all i ∈ I and (T f ′
α V f

α)(i0) > V f
α (i0) for some i0 ∈ I. Then

V f ′
α (i) ≥ V f

α(i) for all i ∈ I and V f ′
α (i0) > V f

α (i0).

3.2 Functional Equation

We now define the mapping T ∗α for any function v(·), bounded on the state space:

(T ∗αv)(i) := max
a∈Ai



ra(i) + α

∑

j∈I
pa(i, j)v(j)



 , i ∈ I. (3.5)

Its n-th iterate is defined by

(T ∗α,nv)(i) := max
a∈Ai



ra(i) + α

∑

j∈I
pa(i, j)(T ∗α,n−1v)(j)



 , i ∈ I. (3.6)

The following lemma establishes convergence of these iterates.

Lemma 3.2.1 For any bounded function v(i), i ∈ I,

lim
n→∞

(T ∗α,nv)(i) = V ∗
α (i),

for all i ∈ I.

Proof Discussed at the lectures. (Interpret the n-th iterate as the maximum dis-
counted rewards over n periods with final reward v(j) in state j.) 2
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Theorem 3.2.1 v(i) = V ∗
α (i), defined by (3.2), is the unique solution to the func-

tional equation T ∗αv = v, i.e.,

V ∗
α (i) = max

a∈Ai



ra(i) + α

∑

j∈I
pa(i, j)V ∗

α (j)



 , i ∈ I. (3.7)

Any stationary decision rule f = (f, f, f, . . .), satisfying

f(i) ∈ argmaxa∈Ai



ra(i) + α

∑

j∈I
pa(i, j)V ∗

α (j)



 , i ∈ I,

attains the maximal discounted rewards: V f
α(i) = V ∗

α (i).

Proof Discussed at the lectures. (Uniqueness follows from Lemma 3.2.1 and for
optimality it is sufficient to verify that V f

α(i) satisfies (3.7.) 2

3.3 Policy Iteration

Corollary 3.1.1 is the basis for the policy iteration (PI) algorithm in case of dis-
counted rewards. If we determine f ′ = (f ′, f ′, . . .) from f = (f, f, . . .) using

f ′(i) ∈ argmaxa∈Ai



ra(i) + α

∑

j∈I
pa(i, j) V f

α(j)



 , (3.8)

then, either the conditions of Corollary 3.1.1 are satisfied, or V f
α satisfies (3.7). This

means that either f ′ improves on f or, by Theorem 3.2.1, f is optimal.

The Policy Iteration Algorithm

0. Set n := 0. Choose any initial stationary decision rule f0.

1. Compute the discounted value function V fn
α by solving V fn

α = T fn
α V fn

α as
prescribed in Lemma 3.1.1.

2. Put f = fn and compute fn+1 = f ′ from (3.8), taking f ′ = f if possible.

3. If fn+1 = fn then this strategy is optimal, otherwise set n := n+1 and repeat
steps 1, 2 and 3.

Remark 2.5.1 also applies to the discounted reward: step 1 requires solving a set
of linear equations, which is infeasible if the number of states is large. The number
of iterations needed to converge is, however, usually very small. This method is
therefore well suited when the state space is not too large. Similar to Corollary 2.5.1
we have the following result:

Corollary 3.3.1 If the number of states in I is finite, then the PI algorithm con-
verges in finitely many steps.
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3.4 Successive Approximation

We now discuss the successive approximation (SA) approach for discounted rewards.
The computational complexity per iteration using this approach is less sensitive to
the number of states than PI, but it may require a large number of iterations to
get satisfactory results. Lemma 3.2.1 provides the necessary ingredients to formu-
late the SA algorithm. From an approximation vn(·) of V ∗

α (·) we can find a new
approximation vn+1 := (T ∗αvn):

Successive Approximation Algorithm

0. Set n := 0. Choose an ε > 0 and any bounded function v0(i), i ∈ I. (A
common choice is v0(i) ≡ 0.)

1. Compute

vn+1(i) := max
a∈Ai



ra(i) + α

∑

j∈I
pa(i, j)vn(j)



 (3.9)

and let

fn+1(i) ∈ argmaxa∈Ai



ra(i) + α

∑

j∈I
pa(i, j)vn(j)



 . (3.10)

2. Let Mn := maxi∈I {vn(i)− vn−1(i)} and mn := mini∈I {vn(i)− vn−1(i)}.
Stop the algorithm if Mn −mn < ε. Otherwise set n := n + 1 and repeat
steps 1, and 2.

Lemma 3.2.1 ensures that vn(i) → V ∗
α (i), as n → ∞, for all i ∈ I. As

with average rewards, SA provides bounds on total discounted rewards of fn =
(fn, fn, fn, . . .) obtained in the n-th iterate, as is shown in the next theorem.

Theorem 3.4.1 Let vn(i) be obtained from (3.9) and fn(i) from (3.10). Let Mn

and mn be as in the SA algorithm. Then

vn(i) +
α

1− α
mn ≤ V fn

α (i) ≤ V ∗
α (i) ≤ vn(i) +

α

1− α
Mn.

Proof Discussed at the lectures. 2

Example 3.4.1 Selling a house (See Section 3.7 for solutions)
Suppose somebody wants to sell his house. Each day, one potential buyer makes
an offer, to which the owner must react immediately. He can either accept or
reject the offer (no bargaining is allowed). Each rejection of an offer implies a
daily maintenance cost of C euros to the owner. A rejected offer is lost. Each
day, the offer equals i euros with probability p(i), i = 0, 1, 2, . . ., independent of
all past offers. (p(0) may be interpreted as he probability that no offer is made.)
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It may be assumed that the expected value of an offer is finite:
∑∞

j=0 jpj < ∞.
Future offers are discounted using a fixed daily discount rate of α. The goal is
to maximize the expected total discounted rewards.

a) Formulate this problem as a Markov Decision Problem: Describe the state
space and the possible actions; also determine the direct rewards/costs
and the transition probabilities. (Hint: introduce an absorbing state “∞”
which is reached after accepting an offer.)

b) Formulate the optimality equation for the maximum expected discounted
rewards and use it to show that the optimal strategy is a “threshold strat-
egy”. (A threshold strategy is characterized by a threshold value i′ ≥ 0
such that all offers i ≤ i′ are rejected and the first offer larger than i′ is
accepted.)

c) Suppose a threshold strategy f0 with threshold value i0 ≥ 0 is used. Show
that, for all initial states i ≤ i0, the discounted reward function of f0

satisfies
V f0

α (i) = V f0
α (0)

(the value itself need not be determined) and apply the policy improve-
ment strategy once. Show that the new strategy is again a threshold
strategy (and denote its threshold value by i1).

d) Repeating the policy iteration step, we thus obtain a sequence of thresh-
old strategies with threshold values i0, i1, i2, . . .. Use the (strict) mono-
tonicity property of the policy iteration algorithm (i.e., the property that
subsequent value functions are monotonically increasing) and the fact that
V fn

α (in) ≥ in, for n > 0, to show that i1 ≤ i2 ≤ i3 ≤ . . .. (Warning: it
may not be true that i0 ≤ i1.)

Example 3.4.2 Race horse
The owner of a race horse wants to maximize the (discounted) returns of his
horse. The (daily) discount factor is 2

3 . It is possible to participate in a race
every day, but after participating, the horse may not be fit the next day. If the
horse is fit, the expected returns for that day are 2 million euros. If the horse
is still tired, the expected returns are only 1 million euros. Participation in a
match is for free. If the horse is fit and participates in a match, it is again fit
the next day with probability 2

3 and with probability 1
3 it is still tired the next

day. If the horse is fit and does not participate in a race, it will still be fit the
next day. Similarly, the horse will not be fit the next day, if it participates in
race while it is not fit. If a tired horse rests for a day, it will be fit the next day
with probability 1

2 and it is still tired the next day with probability 1
2 .

a) Formulate this problem as a Markov Decision Problem: Describe the state
and action spaces and give the transition probabilities and direct rewards.
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b) Apply two steps of the successive approximation algorithm. In each step give
the corresponding candidate strategy, as well as lower and upper bounds for
the optimal discounted rewards.

c) Show that it is optimal to let the horse participate every day and determine
the optimal discounted rewards.

If, instead of the discounted rewards, we wish to maximize the long-term average
rewards, it turns out it is not optimal any more to let the horse participate in a race
every day.

d) Show that it is (average) optimal to only let the horse participate if it is fit.

Animal protection regulation does not allow the horse to participate in more than
50% of the races.

e) Describe how an optimal strategy can be found under this restriction. (We are
interested in the method; the optimal strategy itself need not be determined.)

3.5 Linear Programming Approach

We finally discuss the linear programming (LP) approach for discounted rewards
in case |I| < ∞, i.e., the state space is finite. Suppose X0 follows some initial
distribution P{X0 = i} = p0(i) > 0. The requirement p0(i) > 0 for all i is
to ensure that we eventually visit all states. (Until now we simply considered the
process starting from each state separately; in the LP formulation we need to ensure
that the rewards starting in each state matter.) Suppose we are given a fixed
(possibly non-stationary) strategy s. Let

ps,a
n (i) := Ps,p0{Xn = i, An = a},

where the superscript p0 denotes that this probability depends on the choice of
p0(·). Clearly,

ps
n(i) := Ps,p0{Xn = i} =

∑

a∈Ai

ps,a
n (i).

We may also write the Chapman-Kolmogorov type equations

ps
n+1(j) =

∑

i∈I

∑

a∈Ai

ps,a
n (i)pa(i, j).

This all brings us to the formulation of the following LP:

max
s

∞∑
n=0

αn
∑

i∈I

∑

a∈Ai

ps,a
n (i)ra(i)

subject to∑

a∈Ai

ps,a
0 (i) = p0(i), i ∈ I, (3.11)
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∑

a∈Aj

ps,a
n+1(j) =

∑

i∈I

∑

k∈Ai

ps,k
n (i)pk(i, j), j ∈ I, n = 0, 1, 2, . . . ,

ps,a
n (i) ≥ 0, i ∈ I, a ∈ Ai, n = 0, 1, 2, . . . .

Instead of maximizing over all s we may as well maximize over the variables ps,a
n (i).

This is clear, since we can identify a strategy with any realization of the ps,a
n (i):

sa
n(i) :=

ps,a
n (i)∑

k∈Ai
ps,k

n (i)
,

if
∑

k∈Ai
ps,k

n (i) > 0, otherwise the choice of sa
n(i) does not matter (the process

can not reach state i at time n).
A severe problem with (3.11) is that the number of decision variables is infinite,

even if the state space is finite. This can be circumvented by defining

xs,a(i) :=
∞∑

n=0

αnps,a
n (i),

which can be interpreted as the “discounted” number of visits to state i which are
followed by action a. From (3.11) we obtain

max
∑

i∈I

∑

a∈Ai

xs,a(i)ra(i)

subject to∑

a∈Aj

xs,a(j) = p0(j) + α
∑

i∈I

∑

k∈Ai

xs,k(i)pk(i, j), j ∈ I, (3.12)

xs,a(i) ≥ 0, i ∈ I, a ∈ Ai.

Since the optimum is attained for at least 1 basic solution it is sufficient that we
concentrate on these. Note that the number of non-zero variables in a basic solution
can not be more than |I|, which is the number of restrictions in (3.12). Since we
required that p0(i) > 0 for all i, it must be that for each i we have xs,a(i) > 0 for
exactly one value a ∈ Ai and xs,k(i) = 0 for k 6= a. It may be verified that choosing
s = f = (f, f, f, . . .), the stationary decision rule with f(i) = a if xs,a(i) > 0, the
maximum discounted rewards for each initial state can be attained.

Again, the LP formulation (3.12) can be modified to incorporate restrictions on the
allowed strategies. The program will then render an optimal stationary randomized
strategy (if it exists) under this additional restriction. We emphasize again that
neither PI nor SA can cope with such restrictions. Moreover, it may be so that
no stationary decision rule attains the same maximum discounted reward as the
optimal randomized strategy.

Example 3.5.1 Two-state MDP with discounted costs (See Section 3.7 for so-
lutions)
Consider again the problem described in Example 2.6.1, but now with dis-
counted costs (with discount factor α = 1

2 per period.)
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a) Carry out two steps of the successive approximation algorithm. In each step,
determine the corresponding strategy.

b) Show that it is optimal to take action 2 in state 0 and action 1 in state 1.
Also determine the minimal discounted cost.

c) State the corresponding Linear Programming formulation for this MDP with
discounted cost. (The linear program need not be solved.)

d) How can we distill the optimal solution from the solution of the linear pro-
gram?

3.6 Relating Average and Discounted Rewards

We finally state the following theorem that relates average rewards and correspond-
ing relative values with discounted rewards for α → 1.

Theorem 3.6.1 Suppose that for the stationary decision rule f the average reward
gf and a corresponding relative reward function df (i), i ∈ I are well defined (see
Chapter 2). We then have:

gf = lim
α→1

(1− α)V f
α (i), i ∈ I, (3.13)

df (i)− df (j) = lim
α→1

(
V f

α(i)− V f
α(j)

)
. (3.14)

Proof Discussed at the lectures. 2

Example 3.6.1 Problem 2: Bacteria farm (See Section 3.7 for solutions)
Consider a scientific bacteria farm. Each day a sample worth e 2000 can be
drawn from a healthy bacteria population. Due to the absence of sun light, an
epidemic reaction may take place during the night, infecting the entire popula-
tion (instantly). Such a reaction occurs in a healthy population with probability
1
3 . With probability 2

3 , the population is still healthy the next day. An infected
population remains infected for ever. Still, from an infected population, a sam-
ple worth e 1.000 can be drawn every day. At the beginning of the day, the
bacteria reservoir is inspected. If the population is infected, it can be replaced
with a new (healthy) population. The replacement cost is e 1.000 (that must
be payed immediately when the decision to replace the population is made).
If a population is replaced, no sample can be taken from the old one, that
must be thrown away immediately so that the reservoir can be cleaned. The
new population is available the next day (and is always healthy). The goal is to
maximize the total discounted rewards. The discount factor is α ∈ (0, 1) per day.

This problem can be modeled as a Markov Decision Problem as follows. There
are two possible states at the beginning of the day: state 0 (the population is
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infected) and state 1 (the population is healthy). There are also two possible
actions: action 0 (the population is not replaced) and action 1 (the population
is replaced). The direct rewards are: r0(0) = 1, r0(1) = 2, r1(0) = r1(1) =
−1. The transition probabilities are given by p0(0, 0) = p1(0, 1) = p1(1, 1) =
1, p0(1, 0) = 1− p0(1, 1) = 1

3 .

a) Carry out two steps of the successive approximation algorithm (choose the null
function for initialization) Show that, starting with a healthy population, the

maximum discounted rewards are between 2+ 5
3α+ α2

1−α and 2+ 5
3α+ 5α2

3(1−α) .

(Use the bounds corresponding to the second iteration.)

Consider the stationary decision rule f that replaces the bacteria population
whenever it is infected, and never replaces the population when it is healthy.

b) Verify that, starting with a healthy population, the discounted rewards for

this strategy equal
2− 1

3 α

(1−α)(1+ 1
3 α)

. (This may be done by substituting this

value.) Also determine the discounted rewards when starting with an infected
population.

After a more thorough investigation of this problem, it turns out that strategy
f renders the maximum discounted rewards for all α ∈ ( 6

7 , 1).

c) Determine the average rewards rendered by f as well as the corresponding
relative values, by using the expressions for the relative value function found
in part b. (If part b has not been answered, you may determine the average
rewards and the relative rewards using a different approach.)

3.7 Solutions to selected exercises

Example 3.4.1 Selling a house

a) State on the n-th day: Xn = current offer ∈ I = {0, 1, 2, . . .} ∪ {∞}.
Ai = {0, 1} = {reject,accept} for i < ∞, A∞ = {•}.
r0(i) = −C, ∀i < ∞; r1(i) = i, ∀i < ∞; r•(∞) = 0.
p0(i, j) = p(j), ∀i, j < ∞; p1(i,∞) = 1, ∀i < ∞; p•(∞,∞) = 1.

b) Optimality equation:

V ∗
α (i) = max{−C + α

∞∑

j=0

p(j)V ∗
α (j), i + αV ∗

α (∞)}.

Since the first entry is independent of i we have that action 0 is optimal
if i < −C + α

∑∞
j=0 p(j)V ∗

α (j) − αV ∗
α (∞) and action 1 is optimal if i >

−C + α
∑∞

j=0 p(j)V ∗
α (j)− αV ∗

α (∞).
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c) Set f0(i) = 0 if i ≤ i0 and f0(i) = 1 if i > i0. Then, for i ≤ i0,

V f0
α (i) = −C + α

∞∑

j=0

p(j)V f0
α (j),

and the right hand side is independent of i so that V f0
α (i) = V f0

α (0). Fur-
thermore note that

V f0
α (∞) = 0 + αV f0

α (∞),

So that V f0
α (∞) = 0 and, for i > i0,

V f0
α (i) = i + αV f0

α (∞) = i.

Applying the policy iteration step once, we have

f1(i) = arg max{−C + α

∞∑

j=0

p(j)V f0
α , i},

and, since the first entry is again independent of i, we have that f1 is a
threshold strategy with threshold i1 = b−C + α

∑∞
j=0 p(j)V f0

α c.

d) First note that, for n ≥ 1, V fn
α (in) ≥ in because fn(i) results from the max-

imization in the improvement step (this is not true for n = 0). If in+1 < in
then the optimal action in state in changed in step n + 1 of the policy iter-

ation algorithm (from 0 to 1). This is only possible if V
fn+1
α (in) > V fn

α (in)
(strict monotonicity). Note also that V

fn+1
α (in) = in. This implies that

in = V
fn+1
α (in) > V fn

α (in) ≥ in, which is a contradiction. So it must be
that in+1 ≥ in.

Example 3.5.1 Two-state MDP with discounted costs

a) Take v0(0) = v0(1) = 0 (other choices are possible, but this choice simplifies
the first step).

v1(0) = min {1, 0} = 0, f1(0) = 2;
v1(1) = min {2, 2} = 2, f1(1) ∈ {1, 2};

v2(0) = min
{
1 + 1

2

(
1
2 · 0 + 1

2 · 2
)
, 0 + 1

2

(
1
4 · 0 + 3

4 · 2
)}

= 3
4 , f2(0) = 2;

v2(1) = min
{
2 + 1

2

(
2
3 · 0 + 1

3 · 2
)
, 2 + 1

2

(
1
3 · 0 + 2

3 · 2
)}

= 2 1
3 , f2(1) = 1.

b) One step of policy iteration with f =
(

2
1

)
, rf =

(
0
2

)
, P f =

(
1
4

3
4

2
3

1
3

)
.
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V f
α (0) = 0 + α

(
1
4
V f

α (0) +
3
4
V f

α (1)
)

V f
α (1) = 2 + α

(
2
3
V f

α (0) +
1
3
V f

α (1)
)

Solving (with α = 1
2 ) gives: V f

α (0) = 36
29 en V f

α (1) = 84
29 .

f ′(0) ∈ argmin
{
1 + 1

2

(
1
2 · 36

29 + 1
2 · 84

29

)
, 36

29

}
= {2},

f ′(1) ∈ argmin
{

84
29 , 2 + 1

2

(
1
3 · 36

29 + 2
3 · 84

29

)}
= {1}.

f ′ = f and so this strategy is optimal.

V ∗
α= 1

2
=

(
36
29
84
29

)
.

c)

min
x(i,a)

x(0, 1) + 2x(1, 1) + 2x(1, 2)

subject to

x(0, 1) + x(0, 2) = p0(0) +
1
2

(
1
2
x(0, 1) +

1
4
x(0, 2) +

2
3
x(1, 1) +

1
3
x(1, 2)

)
,

x(1, 1) + x(1, 2) = p0(1) +
1
2

(
1
2
x(0, 1) +

3
4
x(0, 2) +

1
3
x(1, 1) +

2
3
x(1, 2)

)
,

x(i, a) ≥ 0.

Here x(i, a) is the ”discounted number” of visits to state i folllowed by ac-
tion a. The initialisation probabilities p0(i) may be chosen arbitrarily, as long
as p0(i) > 0 for i = 0, 1.

d) In general: s∗,a(i) = x(i,a)P
k∈Ai

x(i,k) , but since the optimum is also attained in

at least one basic solution of the linear program, we can also find an optima
decision rule: f∗(i) = a if x(i, a) > 0 (and if x(i, a) > 0 for more than one
action a, an arbitrary choice may be made among these actions.).

Example 3.6.1 Bacteria farm

a) (all rewards and costs are divided by 1000)

v0(0) = v0(1) = 0

v1(0) = max {1 + αv0(0),−1 + αv0(1)} = 1
v1(1) = max

{
2 + 1

3αv0(0) + 2
3αv0(1),−1 + αv0(1)

}
= 2
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v2(0) = max {1 + α,−1 + 2α} = 1 + α (want α ≤ 1)
v2(1) = max

{
2 + 1

3α + 4
3α,−1 + 2α

}
= 2 + 5

3α

m2 = min {v2(0)− v1(0), v2(1)− v1(1)} = α,
M2 = max {v2(0)− v1(0), v2(1)− v1(1)} = 5

3α,

⇒ 2 +
5
3
α +

α

1− α
α ≤ V ∗

α (1) ≤ 2 +
5
3
α +

α

1− α
· 5
3
α

b) (1) V f
α (0) = −1 + αV f

α (1)
(2) V f

α (1) = 2 + 1
3αV f

α (0) + 2
3αV f

α (1)
Vul (1) in (2): ⇒ (

1− 1
3α2 − 2

3α
)
V f

α (1) = 2− 1
3α

⇒ V f
α (0) = −1 + α(2− 1

3 α)

(1−α)(1+ 1
3 α)

.

c)

gf = lim
α→1

(1− α)V f
α (0) =

5
4

df (1)− df (0) = lim
α→1

(
V f

α (1)− V f
α (0)

)
=

9
4



Appendix A

Proofs

A.1 Theorem 1.3.1

Proof The proof is by induction on n. Clearly, since there’s no decision to take
when the planning horizon is left, we have for all possible strategies V s

0 (i) = V ∗
0 (i),

i ∈ I. Let sn = (sn, sn−1, . . . , s0) be an arbitrary strategy over n periods, and let
V s

n (h, i) be the expected reward when using sn, starting from state i with history
h. Assume that (this is the induction step; it is certainly satisfied for n = 0)

V ∗
n (i) ≥ V s

n (h, i),

uniformly for all possible histories h. Then,

V s
n+1(h, i) =

∑

a∈Ai

sa
n+1(h, i)


ra(i) +

∑

j∈I
pa(i, j)V s

n ((h, i, a), j)




induction!≤
∑

a∈Ai

sa
n+1(h, i)


ra(i) +

∑

j∈I
pa(i, j)V ∗

n (j)




≤ max
a∈Ai



ra(i) +

∑

j∈I
pa(i, j)V ∗

n (j)





= V ∗
n+1(i).

The proof is completed by noting that f∗n attains the (maximum) expected rewards
V ∗

n for all n. 2

A.2 Theorem 2.3.1

Proof In the proof, we first show that lim supn→∞
1
nV s

n (i) ≤ g and then that
this upper bound can actually be attained. We start with an upper bound for the

39



40 APPENDIX A. PROOFS

expected direct improvement of the function d(·) in one step. Note that for any
strategy s

Es[d(Xt+1)|Xt = i] =
∑

a

sa(i)


∑

j

pa(i, j)d(j) + ra(i)− ra(i)




≤ max
a


∑

j

pa(i, j)d(j) + ra(i)


−

∑
a

sa(i)ra(i)

= d(i) + g − (Es[rAt(Xt)|Xt = i],

for all i ∈ I. Thus, the expected direct one-step improvement can not be more
than g − (Es[rAt(Xt)|Xt = i]. By conditioning on the state at time t we can also
bound the one-step improvement in the (t + 1)-st step:

Es[d(Xt+1)|X0 = i] =
∑

j

ps
t (i, j)E

s[d(Xt+1)|Xt = j]

≤
∑

j

ps
t (i, j)

(
d(j) + g −Es[rAt(Xt)|Xt = j]

)

= g + Es[d(Xt)|X0 = i]−Es[rAt(Xt)|X0 = i],

for all i ∈ I. Adding the previous equation over t = 0 up to n − 1 and canceling
identical terms we get

Es[d(Xn)|X0 = i] ≤ n g + Es[d(X0)|X0 = i]− V s
n (i),

so that, since d(·) is bounded,

lim sup
n→∞

1
n

V s
n (i) ≤ g.

The proof is completed by noting that all above inequalities may be replaced by
equality signs when a stationary decision rule f = (f, f, f, . . .) that satisfies

f(i) ∈ argmaxa∈Ai



ra(i) +

∑

j∈I
pa(i, j) d(j)



 ,

is used. 2

A.3 Theorem 2.4.1

Proof The fact that g = gf follows from Theorem 2.3.1: By considering the same
Markov decision process with the restriction that the action space in state i only
consists of f(i), for all i ∈ I; since there’s only one strategy allowed, it is also the
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optimal strategy for this modified process.
To complete the proof, substitute (2.16) m times into itself to obtain

df
0(i) = V f

m(i)−mg +
∑

j∈I
pf

m(i, j)df
0(j).

From (2.17) we similarly have

d(i) = V f
m(i)−mg +

∑

j∈I
pf

m(i, j)d(j).

Subtracting these two equations gives

df
0(i)− d(i) =

∑

j∈I
pf

m(i, j)
(
df
0(j)− d(j)

)
. (A.1)

If pf
m(i, j) → πf (j), as m →∞, we therefore immediately obtain

df
0(i)− d(i) =

∑

j∈I
πf (j)

(
df
0(j)− d(j)

)
, (A.2)

which is independent of i and, thus, the theorem is proved. (The interchange of
the limit and the summation is allowed because df and d are bounded functions;
use the Dominated Convergence Theorem.)

If the pf
m(i, j) do not converge we can still use the Césaro limit 1

n

∑m
n=1 pf (i, j) →

πf (j), as n →∞ to arrive at (A.2), by adding (A.1) over m = 1, 2, . . . , n, dividing
by n and letting n →∞ (again using dominated convergence). 2

A.4 Theorem 2.5.1

Proof We start from the standard equations for the relative values:

df
0(i) + gf = rf (i) +

∑

j∈I
pf (i, j)df

0(j)

≤ rf ′(i) +
∑

j∈I
pf ′(i, j)df

0(j).

(The inequality is a consequence of the policy improvement step.) Using f ′, the
expected reward at time t (starting in i0) is

∑

i∈I
pf ′

t (i, i0)rf ′(i) ≥
∑

i∈I
pf ′

t (i, i0)


df

0(i) + gf −
∑

j∈I
pf ′(i, j)df

0(j)




= gf +
∑

i∈I
pf ′

t (i, i0)df
0(i)−

∑

j∈I
pf ′

t+1(i0, j)d
f
0(j). (A.3)
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If πf ′(i) = limt→∞ pf ′
t (i, i0) exists, then we can take t →∞ and use the bounded-

ness of rf and df to interchange limit and summation:
∑

i∈I
πf ′(i)rf ′(i) ≥ gf +

∑

i∈I
πf ′(i)df

0(i)−
∑

j∈I
πf ′(j)df

0(j),

or, equivalently,
gf ′ ≥ gf .

If limt→∞ pf ′
t (i, i0) does not exist, then we can add (A.3) over t = 0, . . . , T , divide

by T , and let T →∞ to arrive at the same conclusion. 2

A.5 Theorem 2.5.3

Because of Theorem 2.5.1, it is sufficient to show that gf ′ = gf implies (ii). We
therefore assume that gf ′ = gf . The proof is given in three steps.

(a) The recurrent sets of f and f ′ coincide and πf (i) = πf ′(i) for all i ∈ R, where
R is the set of recurrent states;

(b) df ′(i, i0) is well defined (with the same reference state i0) and equal to
df (i, i0) for i ∈ R;

(c) df (i, i0) < df ′(i, i0) for all i 6∈ R.

For the first step, note that

rf ′(i) +
∑

j∈I
pf ′(i, j)df (j) ≥ df (i) + gf ,

with strict inequality iff f ′(i) 6= f(i). Multiplying this inequality by πf ′(i) and
summing over all i ∈ I gives

gf ′ +
∑

j∈I
πf ′(j)df (j) ≥ gf +

∑

i∈I
πf ′(i)df (i),

with strict inequality iff for some i ∈ I both f ′(i) 6= f(i) and πf ′(i) > 0. Since
we assumed that gf = gf ′ , it must be that f ′(i) = f(i) for all i with πf ′(i) > 0.
Since both f and f ′ are assumed to have a single recurrent set, they must coincide,
because on the recurrent set the two strategies prescribe the same actions. This
also implies that the equilibrium distributions are the same.

Step 2. Since the two chains have the same recurrent states, we may choose
i0 ∈ R as the reference state for f ′ too. Furthermore, for all i ∈ R, df (i, i0) and
df (i, i0) both satisfy

d(i) + g = rf (i) +
∑

j∈I
pf (i, j)d(j)

= rf (i) +
∑

j∈R
pf (i, j)d(j),
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because pf (i, j) = 0 if j 6∈ R and, again, because on R the two strategies prescribe
the same actions.
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