TECHNISCHE UNIVERSITEIT EINDHOVEN

Department of Mathematics and Computer Science
Solutions to Exam Stochastic Processes 2 (2S480) on January 20, 2005, 09.00-12.00.
1.
a.

$$
\begin{aligned}
& E\left[T_{1}\right]=\frac{1}{\lambda+\mu}+\frac{\lambda}{\lambda+\mu} \cdot E\left[T_{2}\right], \\
& E\left[T_{2}\right]=\frac{1}{\lambda+\mu}+\frac{\mu}{\lambda+\mu} \cdot E\left[T_{1}\right],
\end{aligned}
$$

yielding

$$
E\left[T_{1}\right]=\frac{2 \lambda+\mu}{\lambda^{2}+\lambda \mu+\mu^{2}}, \quad E\left[T_{2}\right]=\frac{\lambda+2 \mu}{\lambda^{2}+\lambda \mu+\mu^{2}}
$$

b.

$$
E\left[S_{0}\right]=\frac{1}{\lambda+\mu}+\frac{\lambda}{\lambda+\mu} E\left[T_{1}\right]+\frac{\mu}{\lambda+\mu} E\left[T_{2}\right]=\frac{3}{\lambda+\mu} .
$$

c. For all $\lambda, \mu>0$.
d. The balance equations are:

$$
\begin{aligned}
& p_{0}(\lambda+\mu)=p_{2} \lambda+p_{1} \mu, \\
& p_{1}(\lambda+\mu)=p_{0} \lambda+p_{2} \mu, \\
& p_{2}(\lambda+\mu)=p_{1} \lambda+p_{0} \mu,
\end{aligned}
$$

from which, together with $p_{0}+p_{1}+p_{2}=1$, follows that

$$
p_{1}=p_{2}=p_{3}=\frac{1}{3} .
$$

e.

$$
p_{0}=\frac{1}{3}=\frac{1}{\lambda+\mu} \cdot \frac{1}{\frac{3}{\lambda+\mu}}=\frac{1}{\lambda+\mu} \cdot \frac{1}{E\left[S_{0}\right]} ;
$$

clearly, the fraction of time spent in state 0 is equal to the expected time spent in 0 during a cycle divided by the expected cycle length.
f. By symmetry, $p_{0}=\ldots=p_{N}=\frac{1}{N+1}$.
2.
a.

$$
\begin{aligned}
p_{10}^{\prime}(t) & =\lambda-\lambda p_{10}(t), \\
p_{21}^{\prime}(t) & =2 \lambda p_{11}(t)-2 \lambda p_{21}(t), \\
p_{20}^{\prime}(t) & =2 \lambda p_{10}(t)-2 \lambda p_{20}(t) .
\end{aligned}
$$

b.

$$
\begin{aligned}
& p_{10}(t)=1-p_{11}(t)=1-e^{-\lambda t}, \\
& p_{21}(t)=2 e^{-\lambda t}-2 e^{-2 \lambda t}=2 e^{-\lambda t}\left(1-e^{-\lambda t}\right), \\
& p_{20}(t)=1-2 e^{-\lambda t}+e^{-2 \lambda t}=\left(1-e^{-\lambda t}\right)^{2} .
\end{aligned}
$$

c.

$$
E\left(O_{i}(t)\right)=\int_{s=0}^{t} p_{2 i}(s) \mathrm{d} s, \quad i=0,1,2
$$

so we find

$$
\begin{aligned}
& E\left(O_{2}(t)\right)=\frac{1}{2 \lambda}\left(1-e^{-2 \lambda t}\right) \\
& E\left(O_{1}(t)\right)=\frac{2}{\lambda}\left(1-e^{-\lambda t}\right)+\frac{1}{\lambda}\left(1-e^{-2 \lambda t}\right) \\
& E\left(O_{0}(t)\right)=t-E\left(O_{1}(t)\right)-E\left(O_{2}(t)\right)=t-\frac{2}{\lambda}\left(1-e^{-\lambda t}\right)+\frac{1}{2 \lambda}\left(1-e^{-2 \lambda t}\right)
\end{aligned}
$$

d. The mean total production in $(0, t)$ is $2 h E\left(O_{2}(t)\right)+h E\left(O_{1}(t)\right)$.
3.
a. $E[Z]=\frac{1-p}{p}$ and $\operatorname{Var}[Z]=\frac{1-p}{p^{2}}$.
b. $P\left[X_{1}=0\right]=p$ and

$$
P\left[X_{2}=0\right]=\sum_{i=0}^{\infty} P[Z=i]\left(P\left[X_{1}=0\right]\right)^{i}=\sum_{i=0}^{\infty} p((1-p) p)^{i}=\frac{p}{1-(1-p) p} .
$$

c. $E\left[X_{i}\right]=E[Z]^{i}=\frac{(1-p)^{i}}{p^{i}}$.
d. For all p for which $E[Z] \leq 1$, and thus for all $\frac{1}{2} \leq p \leq 1$.
e. Clearly $\pi_{0}=1$ for $\frac{1}{2} \leq p \leq 1$. If $0 \leq p<\frac{1}{2}$, then π_{0} is the root in $[0,1)$ of

$$
\pi_{0}=\sum_{i=0}^{\infty} P[Z=i] \pi_{0}^{i}=\frac{p}{1-(1-p) \pi_{0}}
$$

yielding

$$
\pi_{0}=\frac{p}{1-p}
$$

4.

a. The mean time between replacements is $\frac{7}{6}$ year. Hence the system is replaced $\frac{6}{7}$ times per year.
b. The long-run average cost per year is $1400 \cdot \frac{6}{7}=1200$ euro.
c. Let L denote the lifetime of the machine, so L is exponential with mean 1 . The probability that an event is an inspection is $P\left[L>\frac{2}{3}\right]=e^{-2 / 3}=0.513$ and the probability that an event is an inspection and the machine is still working when it is inspected is $P\left[L>\frac{5}{6}\right]=e^{-5 / 6}=0.435$. Hence, the probability that the repairman has to replace the system is

$$
1-\frac{P\left[L>\frac{5}{6}\right]}{P\left[L>\frac{2}{3}\right]}=0.154
$$

d. The mean time between two events is

$$
\int_{t=0}^{\frac{2}{3}}\left(t+\frac{1}{6}\right) e^{-t} \mathrm{~d} t+\frac{5}{6} \int_{t=\frac{2}{3}}^{\infty} e^{-t} \mathrm{~d} t=\frac{7}{6}-e^{-2 / 3}=0.653
$$

e. The mean cost of an event is $1400 \cdot P\left[L<\frac{2}{3}\right]+200 \cdot P\left[L>\frac{2}{3}\right]+600 \cdot P\left[\frac{2}{3}<L<\frac{5}{6}\right]=831$ euro. Hence the mean cost per year is

$$
\frac{831}{0.653}=1273 \text { euro. }
$$

Points:

1 a	b	c	d	e	f	2 a	b	c	d	3 a	b	c	d	e	4 a	b	c	d	e
3	1	1	2	1	2	2	3	3	2	2	3	1	1	3	1	2	2	2	3

