TECHNISCHE UNIVERSITEIT EINDHOVEN Department of Mathematics and Computer Science Exam Stochastic Processes 2 (2S480) on November 20, 2006, 14.00-17.00.

1. A store keeps 2 items on stock. Customers arrive at a Poisson rate λ . Each customer demands 1 item, and each time an item is sold, the store immediately orders a new one. The delivery lead time is exponentially distributed with rate μ . Any demand that cannot be immediately satisfied is lost. Let X(t) denote the number of items on stock at time t.

- a. Argue that $\{X(t), t \ge 0\}$ is a continuous time Markov chain and give its transition rates.
- b. Suppose that at time 0 there are exactly 2 items on stock. Compute the expected time until the stock is empty for the first time.
- c. What proportion of time the stock is empty?
- d. What proportion of customer demand is lost?

Suppose now that the store only orders new items when the stock is empty and then orders 2 items, the delivery time of which is exponentially distributed with rate μ .

e. What proportion of time the stock is empty?

Now suppose that at time 0 there are exactly 2 items on stock and that the store decides to stop ordering new items.

- f. Derive the Kolmogorov's backward equations for the transition probabilities $P_{20}(t)$ and $P_{10}(t)$ of the continuous time Markov chain $\{X(t), t \ge 0\}$.
- g. Determine $P_{20}(t)$.

2. Customers arrive at a single-service facility at a Poisson rate λ . The service time for each customer is exponentially distributed with rate μ . At time 0 there is exactly 1 customer in the system. Let Z denote the number of arrivals during a service time.

a. Show that

$$G(r) = \sum_{j=0}^{\infty} P(Z=j)r^{j} = \frac{\mu}{\mu + \lambda(1-r)}, \qquad |r| \le 1$$

- b. Compute E[Z], E[Z(Z-1)] and Var[Z].
- c. Compute the probability that the system ever becomes empty again for all possible values of λ and μ . (Hint: customers arriving during the service of the first customer are generation 1; customers arriving during the service of generation 1 customers are generation 2 and so on.)

3. Orders arrive at a manufacturing system at a Poisson rate of λ per hour, where they are produced in batches. After finishing a batch, all waiting orders are produced in the next batch as soon as N or more orders are present. While waiting for sufficiently many orders, the manufacturing system is idle, which costs w euro per hour. The set-up costs of a batch are K euro. The batch production time (in hours) is uniformly distributed on (0, h), independent of the number of orders in the batch.

a. Let p_k denote the probability that k orders are waiting immediately after finishing a batch. Show that

$$p_k = \frac{1}{\lambda h} \left[1 - e^{-\lambda h} \sum_{i=0}^k \frac{(\lambda h)^i}{i!} \right].$$

- b. Determine the long-run average number of batches produced per hour.
- c. Determine the long-run average costs per hour.

4. Two classes of customers arrive at a single-server facility at a Poisson rate λ_1 and λ_2 , respectively. Class 1 customers are always accepted upon arrival, but class 2 customers are only accepted if the number of customers in the system is less than N. If the system contains N or more customers, arriving class 2 customers are rejected and sent to another service facility. The service times are exponentially distributed with rate μ .

- a. What conditions on λ_1 , λ_2 and μ are necessary to guarantee that the system is stable?
- b. Define states and set up the balance equations for the limiting probabilities (do not solve yet).
- c. In terms of the probabilities in part b, what is the fraction of class 2 customers that is accepted?
- d. In terms of the probabilities in part b, what is the average number in the system and the average amount of time an *accepted* customer spends in the system?

Suppose $\lambda_1 = 1$, $\lambda_2 = 3$, $\mu = 2$ and N = 4.

e. Solve the balance equations for the limiting probabilities.

Points:

1a	b	с	d	е	f	g	2a	b	с	3a	b	с	4a	b	с	d	е
1	2	1	1	1	2	2	3	3	4	4	3	3	2	2	2	2	2