TECHNISCHE UNIVERSITEIT EINDHOVEN
 Department of Mathematics and Computer Science

Solutions to Exam Stochastic Processes 2 (2S480) on November 20, 2006, 14.00-17.00.
1.
a. The transition rate matrix Q is

$$
\left(\begin{array}{ccc}
-2 \mu & 2 \mu & 0 \\
\lambda & -\lambda-\mu & \mu \\
0 & \lambda & -\lambda
\end{array}\right) .
$$

b. Let $T_{i}(i=1,2)$ denote the time, starting from state i, it takes to enter state 0 . Then

$$
E\left[T_{1}\right]=\frac{1}{\lambda+\mu}+\frac{\mu}{\lambda+\mu} E\left[T_{2}\right], \quad E\left[T_{2}\right]=\frac{1}{\lambda}+E\left[T_{1}\right] .
$$

Solving these equations gives

$$
E\left[T_{2}\right]=\frac{2}{\lambda}+\frac{\mu}{\lambda^{2}} .
$$

c. The balance equations are:

$$
\begin{aligned}
2 \mu P_{0} & =\lambda P_{1}, \\
\mu P_{1} & =\lambda P_{2},
\end{aligned}
$$

from which, together with the normalization equation, follows that

$$
P_{0}=\frac{\lambda^{2}}{\lambda^{2}+2 \lambda \mu+2 \mu^{2}} .
$$

d. P_{0}.
e. Now the transition rate matrix Q is

$$
\left(\begin{array}{ccc}
-\mu & 0 & \mu \\
\lambda & -\lambda & 0 \\
0 & \lambda & -\lambda
\end{array}\right) .
$$

So the balance equations are:

$$
\begin{aligned}
\mu P_{0} & =\lambda P_{1}, \\
\lambda P_{1} & =\lambda P_{2},
\end{aligned}
$$

from which, together with the normalization equation, follows that

$$
P_{0}=\frac{\lambda}{\lambda+2 \mu} .
$$

f.

$$
\begin{aligned}
& P_{20}^{\prime}(t)=\lambda P_{10}(t)-\lambda P_{20}(t), \\
& P_{10}^{\prime}(t)=\lambda-\lambda P_{10}(t) .
\end{aligned}
$$

g.

$$
P_{20}(t)=1-e^{-\lambda t}-\lambda t e^{-\lambda t} .
$$

2.

a. Since

$$
P(Z=j)=\left(\frac{\lambda}{\lambda+\mu}\right)^{j} \frac{\mu}{\lambda+\mu}
$$

we get

$$
G(r)=\sum_{j=0}^{\infty}\left(\frac{\lambda r}{\lambda+\mu}\right)^{j} \frac{\mu}{\lambda+\mu}=\frac{\mu}{\lambda+\mu} \cdot \frac{1}{1-\lambda r /(\lambda+\mu)}=\frac{\mu}{\mu+\lambda(1-r)} .
$$

b. We have

$$
E[Z]=G^{\prime}(1)=\frac{\lambda}{\mu}, \quad E[Z(Z-1)]=G^{\prime \prime}(1)=2 \frac{\lambda^{2}}{\mu^{2}},
$$

and thus,

$$
\operatorname{Var}[Z]=E[Z(Z-1)]+E[Z]-E[Z]^{2}=\frac{\lambda^{2}}{\mu^{2}}+\frac{\lambda}{\mu}
$$

c. Let π_{0} denote the probability that the system ever becomes empty again. Then $\pi_{0}=1$ for all $\lambda \leq \mu$. If $\lambda>\mu$, then π_{0} is the unique root on $(0,1)$ of the equation

$$
\pi_{0}=G\left(\pi_{0}\right),
$$

yielding

$$
\pi_{0}=\frac{\mu}{\lambda} .
$$

3.

a. By conditioning on the duration of the batch service time, we get

$$
p_{k}=\int_{0}^{h} e^{-\lambda t} \frac{(\lambda t)^{k}}{k!} \frac{d t}{h}=\frac{1}{\lambda h} \int_{0}^{h} \lambda e^{-\lambda t} \frac{(\lambda t)^{k}}{k!} d t=\frac{1}{\lambda h}\left[1-e^{-\lambda h} \sum_{i=0}^{k} \frac{(\lambda h)^{i}}{i!}\right] .
$$

b. A cycle is the time between the production start of two successive batches, so

$$
E[\text { length of a cycle }]=\frac{h}{2}+\sum_{k=0}^{N-1} p_{k} \frac{N-k}{\lambda},
$$

and thus, the long-run average number of batches produced per hour is

$$
\frac{1}{E[\text { length of a cycle }]}=\frac{1}{h / 2+\sum_{k=0}^{N-1} p_{k}(N-k) / \lambda} .
$$

c. The long-run average costs per hour are equal to

$$
\frac{E[\text { cost incurred during a cycle }]}{E[\text { length of a cycle }]}=\frac{K+w \sum_{k=0}^{N-1} p_{k}(N-k) / \lambda}{h / 2+\sum_{k=0}^{N-1} p_{k}(N-k) / \lambda} .
$$

4.

a. $\lambda_{1}<\mu$.
b. The states are $n, n \geq 0$, refering to the total number in the system. The balance equations are

$$
\begin{aligned}
\left(\lambda_{1}+\lambda_{2}\right) P_{n} & =\mu P_{n+1}, & & n=0,1, \ldots, N-1, \\
\lambda_{1} P_{n} & =\mu P_{n+1}, & & n \geq N .
\end{aligned}
$$

c. By the PASTA property we have

$$
P_{a c c}=\sum_{n=0}^{N-1} p_{n} .
$$

d. The average number in the system is

$$
L=\sum_{n=0}^{\infty} n P_{n}
$$

and by Little's law,

$$
W=\frac{L}{\lambda}
$$

where λ is the number of accepted customers per time unit, so

$$
\lambda=\lambda_{1}+\lambda_{2} P_{a c c}
$$

e.

$$
\begin{aligned}
P_{n} & =2^{n} P_{0}, \quad n=0, \ldots, 4 \\
P_{n} & =\left(\frac{1}{2}\right)^{n-4} 2^{4} P_{0}, \quad n>4 \\
P_{0} & =\frac{1}{47}
\end{aligned}
$$

Points:
$\begin{array}{rrrrrrrrrrrrrrrrrr}1 \mathrm{a} & \mathrm{b} & \mathrm{c} & \mathrm{d} & \mathrm{e} & \mathrm{f} & \mathrm{g} & 2 \mathrm{a} & \mathrm{b} & \mathrm{c} & 3 \mathrm{a} & \mathrm{b} & \mathrm{c} & 4 \mathrm{a} & \mathrm{b} & \mathrm{c} & \mathrm{d} & \mathrm{e} \\ 1 & 2 & 1 & 1 & 1 & 2 & 2 & 3 & 3 & 4 & 4 & 3 & 3 & 2 & 2 & 2 & 2 & 2\end{array}$

