TECHNISCHE UNIVERSITEIT EINDHOVEN

Department of Mathematics and Computer Science
Exam Stochastic Processes 2 (2S480) on November 24, 2004, 09.00-12.00.

1. Consider a Markov process with states 0,1 and 2 and with the following transition rate matrix Q :

$$
\left(\begin{array}{ccc}
-\lambda & \lambda & 0 \\
\mu & -\lambda-\mu & \lambda \\
\mu & 0 & -\mu
\end{array}\right)
$$

where $\lambda>0$ and $\mu>0$.
a. Let $T_{i}(i=1,2)$ denote the time, starting from state i, it takes for the process to enter state 0 . Compute $E\left[T_{1}\right]$ and $E\left[T_{2}\right]$.
b. Let S_{0} denote the time, starting from state 0 , of the first return to state 0 . Compute $E\left[S_{0}\right]$.
c. For which values of λ and μ exist the limiting probabilities p_{0}, p_{1} and p_{2} ?
d. Compute the limiting probabilities p_{0}, p_{1} and p_{2}.
e. Show that

$$
p_{0}=\frac{1}{\lambda} \cdot \frac{1}{E\left[S_{0}\right]},
$$

and explain this relation.
2. Consider an on-off source: this is source that is alternatingly on and off. The on times are exponential with parameter α and the off times are exponential with parameter β. Let $X(t)$ denote the state of the source at time t (with state 1 meaning that the source is on and with state 0 that it is off).
a. Give the transition rate matrix Q of the process $\{X(t), t \geq 0\}$.
b. Derive the Kolmogorov's forward equations for the transition probabilities $p_{11}(t)$ and $p_{10}(t)$.
c. Show that $p_{11}(t)$ satisfies the differential equation

$$
p_{11}^{\prime}(t)=\beta-p_{11}(t)(\alpha+\beta), \quad t \geq 0
$$

and determine $p_{11}(t)$ and $p_{10}(t)$.
d. Let $O(t)$ denote the total amount of time the source is on during the interval $(0, t)$. Compute $E[O(t)]$ when the source is on at time $t=0$.
e. Determine the long-run fraction of time the source is on.
3. Consider a branching process $\left\{X_{i}, i=0,1,2, \ldots\right\}$, starting with one particle: $X_{0}=1$. The number of offspring Z of one particle is binomial with parameters n and p (where n is the number of trials and p is the probability of success).
a. Give $E[Z]$ and $\operatorname{Var}[Z]$.
b. Compute $P\left[X_{1}=0\right]$ and $P\left[X_{2}=0\right]$.
c. Determine $E\left[X_{i}\right]$ for $i=1,2, \ldots$.
d. For which values of n and p is extinction of the population certain?
e. Let $n=2$. Determine the probability that the population dies out (for every $0 \leq$ $p \leq 1$).
4. Consider again the on-off source in 2. While the source is on arrivals are generated according to a Poisson process with rate λ; there are no arrivals when the source is off (this is called an interrupted Poisson process). Let $m_{1}(t)$ and $m_{0}(t)$ denote the mean number of arrivals in $(0, t)$ when the source is on, respectively off at time $t=0$; the Laplace-Stieltjes transform of $m_{i}(t)$ is defined as

$$
\mu_{i}(s)=\int_{t=0}^{\infty} e^{-s t} \mathrm{~d} m_{i}(t)
$$

a. Show that $m_{1}(t)$ and $m_{0}(t)$ satisfy the equations (with $\gamma=\alpha+\lambda$)

$$
\begin{aligned}
& m_{1}(t)=\frac{\lambda}{\gamma}\left(1-e^{-\gamma t}\right)+\frac{\lambda}{\gamma} \int_{x=0}^{t} m_{1}(t-x) \gamma e^{-\gamma x} \mathrm{~d} x+\frac{\alpha}{\gamma} \int_{x=0}^{t} m_{0}(t-x) \gamma e^{-\gamma x} \mathrm{~d} x, \\
& m_{0}(t)=\int_{x=0}^{t} m_{1}(t-x) \beta e^{-\beta x} \mathrm{~d} x .
\end{aligned}
$$

(Hint: condition on the first event, i.e., an arrival or the source changes state).
b. Show that

$$
\mu_{1}(s)=\frac{\lambda \beta}{(\alpha+\beta) s}+\frac{\lambda \alpha}{(\alpha+\beta)(\alpha+\beta+s)}
$$

c. Determine $m_{1}(t)$.
d. What is the relation between $E[O(t)]$ in $\mathbf{2 d}$ and $m_{1}(t)$?

Points:

$$
\begin{array}{rrrrrrrrrrrrrrrrrrr}
1 \mathrm{a} & \mathrm{~b} & \mathrm{c} & \mathrm{~d} & \mathrm{e} & 2 \mathrm{a} & \mathrm{~b} & \mathrm{c} & \mathrm{~d} & \mathrm{e} & 3 \mathrm{a} & \mathrm{~b} & \mathrm{c} & \mathrm{~d} & \mathrm{e} & 4 \mathrm{a} & \mathrm{~b} & \mathrm{c} & \mathrm{~d} \\
3 & 1 & 1 & 3 & 2 & 1 & 2 & 3 & 2 & 2 & 1 & 3 & 2 & 1 & 3 & 3 & 3 & 2 & 2
\end{array}
$$

