TECHNISCHE UNIVERSITEIT EINDHOVEN

Department of Mathematics and Computer Science
Solutions to Exam Stochastic Processes 2 (2S480) on November 24, 2004, 09.00-12.00.
1.
a. $E\left[T_{2}\right]=1 / \mu$ and

$$
E\left[T_{1}\right]=\frac{1}{\lambda+\mu}+\frac{\lambda}{\lambda+\mu} \cdot E\left[T_{2}\right]=\frac{1}{\mu} .
$$

b.

$$
E\left[S_{0}\right]=\frac{1}{\lambda}+E\left[T_{1}\right]=\frac{1}{\lambda}+\frac{1}{\mu} .
$$

c. For all $\lambda, \mu>0$.
d. The balance equations are:

$$
\begin{aligned}
p_{0} \lambda & =p_{1} \mu+p_{2} \mu, \\
p_{1}(\lambda+\mu) & =p_{0} \lambda, \\
p_{2} \mu & =p_{1} \lambda,
\end{aligned}
$$

from which follows that

$$
p_{1}=\frac{\lambda}{\lambda+\mu} \cdot p_{0}, \quad p_{2}=\frac{\lambda}{\mu} \cdot \frac{\lambda}{\lambda+\mu} \cdot p_{0}
$$

and

$$
p_{0}=\left(1+\frac{\lambda}{\lambda+\mu}+\frac{\lambda}{\mu} \cdot \frac{\lambda}{\lambda+\mu}\right)^{-1}=\left(1+\frac{\lambda}{\mu}\right)^{-1} .
$$

e.

$$
p_{0}=\frac{1}{1+\frac{\lambda}{\mu}}=\frac{1}{\lambda} \cdot \frac{1}{\frac{1}{\lambda}+\frac{1}{\mu}}=\frac{1}{\lambda} \cdot \frac{1}{E\left[S_{0}\right]} ;
$$

clearly, the fraction of time spent in state 0 is equal to the expected time spent in 0 during a cycle divided by the expected cycle length.
2.
a.

$$
Q=\left(\begin{array}{cc}
-\alpha & \alpha \\
\beta & -\beta
\end{array}\right)
$$

b.

$$
\begin{aligned}
p_{11}^{\prime}(t) & =p_{10}(t) \beta-p_{11}(t) \alpha, \\
p_{10}^{\prime}(t) & =p_{11}(t) \alpha-p_{10}(t) \beta .
\end{aligned}
$$

c. Substitute $p_{10}(t)=1-p_{11}(t)$ in the differential equation for $p_{11}(t)$. Together with the initial condition $p_{11}(0)=1$, this differential equation is solved by

$$
p_{11}(t)=\frac{\beta}{\alpha+\beta}+\frac{\alpha}{\alpha+\beta} e^{-(\alpha+\beta) t},
$$

and thus

$$
p_{10}(t)=1-p_{11}(t)=\frac{\alpha}{\alpha+\beta}-\frac{\alpha}{\alpha+\beta} e^{-(\alpha+\beta) t} .
$$

d.

$$
E[O(t)]=\int_{s=0}^{t} p_{11}(s) \mathrm{d} s=\frac{\beta}{\alpha+\beta} \cdot t+\frac{\alpha}{(\alpha+\beta)^{2}}\left(1-e^{-(\alpha+\beta) t}\right) .
$$

e. $P_{o n}$ is equal to $\lim _{t \rightarrow \infty} p_{11}(t)$, or it follows from

$$
P_{o n}=\frac{E[\text { on time }]}{E[\text { on time }]+E[\text { off time }]}=\frac{\frac{1}{\alpha}}{\frac{1}{\alpha}+\frac{1}{\beta}}=\frac{\beta}{\alpha+\beta} .
$$

3.

a. $E[Z]=n p$ and $\operatorname{Var}[Z]=n p(1-p)$.
b. $P\left[X_{1}=0\right]=(1-p)^{n}$ and

$$
P\left[X_{2}=0\right]=\sum_{k=0}^{n} P[Z=k]\left(P\left[X_{1}=0\right]\right)^{k}=\left(1-p+p(1-p)^{n}\right)^{n}
$$

c. $E\left[X_{i}\right]=(n p)^{i}$.
d. For all $n p \leq 1$.
e. Let $n=2$. Then $\pi_{0}=1$ for $0 \leq p \leq \frac{1}{2}$. If $\frac{1}{2}<p \leq 1$, then π_{0} is the root in $[0,1)$ of

$$
\pi_{0}=(1-p)^{2}+2 p(1-p) \pi_{0}+p^{2} \pi_{0}^{2}
$$

yielding

$$
\pi_{0}=\left(\frac{1-p}{p}\right)^{2}
$$

4.

a. Let X denote the time till the first event, when the source is on at time $t=0$. Then X is exponential with parameter $\gamma=\alpha+\lambda$, and the event is an arrival with probability λ / γ and otherwise the source is turned off. Hence, by conditioning on the first event, we obtain

$$
m_{1}(t)=\int_{x=0}^{\infty} m_{1}(t \mid X=x) \gamma e^{-\gamma x} \mathrm{~d} x
$$

where

$$
\begin{aligned}
m_{1}(t \mid X=x) & =\frac{\lambda}{\gamma}\left(1+m_{1}(t-x)\right)+\frac{\alpha}{\gamma} m_{0}(t-x), \quad x \leq t, \\
& =0, \quad x>t .
\end{aligned}
$$

So,

$$
\begin{aligned}
m_{1}(t) & =\frac{\lambda}{\gamma} \int_{x=0}^{t}\left(1+m_{1}(t-x)\right) \gamma e^{-\gamma x} \mathrm{~d} x+\frac{\alpha}{\gamma} \int_{x=0}^{t} m_{0}(t-x) \gamma e^{-\gamma x} \mathrm{~d} x, \\
& =\frac{\lambda}{\gamma}\left(1-e^{-\gamma t}\right)+\frac{\lambda}{\gamma} \int_{x=0}^{t} m_{1}(t-x) \gamma e^{-\gamma x} \mathrm{~d} x+\frac{\alpha}{\gamma} \int_{x=0}^{t} m_{0}(t-x) \gamma e^{-\gamma x} \mathrm{~d} x,
\end{aligned}
$$

and the integral equation for $m_{0}(t)$ is obtained similarly.
b. Transforming the two intergral equations gives

$$
\begin{aligned}
& \mu_{1}(s)=\frac{\lambda}{\gamma+s}+\frac{\lambda}{\gamma+s} \cdot \mu_{1}(s)+\frac{\alpha}{\gamma+s} \cdot \mu_{0}(s), \\
& \mu_{0}(s)=\frac{\beta}{\beta+s} \cdot \mu_{1}(s)
\end{aligned}
$$

yielding

$$
\mu_{1}(s)=\frac{\lambda(\beta+s)}{s(\alpha+\beta+s)}=\frac{\lambda \beta}{(\alpha+\beta) s}+\frac{\lambda \alpha}{(\alpha+\beta)(\alpha+\beta+s)} .
$$

c. Inverting the transform $\mu_{1}(s)$ gives

$$
m_{1}(t)=\frac{\lambda \beta}{\alpha+\beta} \cdot t+\frac{\lambda \alpha}{(\alpha+\beta)^{2}}\left(1-e^{-(\alpha+\beta) t}\right) .
$$

d. $m_{1}(t)=\lambda E[O(t)]$.

Points:

$$
\begin{array}{rrrrrrrrrrrrrrrrrrr}
1 \mathrm{a} & \mathrm{~b} & \mathrm{c} & \mathrm{~d} & \mathrm{e} & 2 \mathrm{a} & \mathrm{~b} & \mathrm{c} & \mathrm{~d} & \mathrm{e} & 3 \mathrm{a} & \mathrm{~b} & \mathrm{c} & \mathrm{~d} & \mathrm{e} & 4 \mathrm{a} & \mathrm{~b} & \mathrm{c} & \mathrm{~d} \\
3 & 1 & 1 & 3 & 2 & 1 & 2 & 3 & 2 & 2 & 1 & 3 & 2 & 1 & 3 & 3 & 3 & 2 & 2
\end{array}
$$

