TECHNISCHE UNIVERSITEIT EINDHOVEN
 Department of Mathematics and Computer Science

Solutions to Exam Stochastic Processes 2 (2S480) on November 24, 2005, 09.00-12.00.
1.
a. The transition rate matrix Q is

$$
\left(\begin{array}{ccc}
-2 \lambda & 2 \lambda & 0 \\
\mu & -\lambda-\mu & \lambda \\
0 & 2 \mu & -2 \mu
\end{array}\right)
$$

b. Let $T_{i}(i=1,2)$ denote the time, starting from state i, it takes to enter state 0 . Then

$$
E\left[T_{1}\right]=\frac{1}{\lambda+\mu}+\frac{\lambda}{\lambda+\mu} E\left[T_{2}\right], \quad E\left[T_{2}\right]=\frac{1}{2 \mu}+E\left[T_{1}\right] .
$$

Solving these equations gives

$$
E\left[T_{1}\right]=\frac{2 \mu+\lambda}{2 \mu^{2}}
$$

c. The balance equations are:

$$
\begin{aligned}
2 \lambda P_{0} & =\mu P_{1} \\
\lambda P_{1} & =2 \mu P_{2}
\end{aligned}
$$

from which, together with the normalization equation, follows that

$$
P_{0}=\left(\frac{\mu}{\lambda+\mu}\right)^{2}
$$

Alternatively, this can be obtained by noting that both workers are working independently, and the probability that a working is 'working' is $\mu /(\lambda+\mu)$.
d. Now the transition matrix becomes

$$
\left(\begin{array}{ccc}
-2 \lambda & 2 \lambda & 0 \\
\mu & -\lambda-\mu & \lambda \\
0 & \mu & -\mu
\end{array}\right) .
$$

Setting up the balance equations and solving these yields

$$
P_{0}=\frac{\mu^{2}}{\mu^{2}+2 \lambda \mu+2 \lambda^{2}} .
$$

e. Now only two states are possible, state 0 and 1 . Balance of flow gives

$$
2 \lambda P_{0}=\mu P_{1},
$$

and thus

$$
P_{0}=\frac{\mu}{\mu+2 \lambda} .
$$

2.

a. We have

$$
E[Z]=G^{\prime}(1)=\frac{c}{1-c}, \quad E[Z(Z-1)]=G^{\prime \prime}(1)=\frac{2 c^{2}}{(1-c)^{2}},
$$

and thus,

$$
\operatorname{Var}[Z]=E[Z(Z-1)]+E[Z]-E[Z]^{2}=\frac{c}{(1-c)^{2}}
$$

b.

$$
G(r)=\sum_{j=0}^{\infty} P[Z=j] r^{j}=(1-c) \sum_{j=0}^{\infty} c^{j} r^{j},
$$

and hence,

$$
P\left[X_{1}=j\right]=P[Z=j]=(1-c) c^{j}, \quad j=0,1,2, \ldots .
$$

c. $E\left[X_{n}\right]=E[Z]^{n}=\left(\frac{c}{1-c}\right)^{n}$.
d. The extinction probability $\pi_{0}=1$ for all c for which $E[Z] \leq 1$, and thus for all $0<c \leq \frac{1}{2}$. If $\frac{1}{2}<c<1$, then π_{0} is the unique root on $(0,1)$ of the equation

$$
\pi_{0}=G\left(\pi_{0}\right),
$$

yielding

$$
\pi_{0}=\frac{1-c}{c} .
$$

e.

$$
\begin{aligned}
E\left[r^{X_{2}}\right] & =\sum_{j=0}^{\infty} E\left[r^{X_{2}} \mid X_{1}=j\right] P\left[X_{1}=j\right] \\
& =\sum_{j=0}^{\infty} E\left[r^{Z_{1}+\cdots+Z_{j}}\right](1-c) c^{j} \\
& =\sum_{j=0}^{\infty} G(r)^{j}(1-c) c^{j} \\
& =\frac{1-c}{1-c G(r)}=\frac{(1-c)(1-c r)}{1-c r-c(1-c)}
\end{aligned}
$$

3.

a. $\lim _{t \rightarrow \infty} N(t) / t=\sum_{i=1}^{n} \frac{1}{\mu_{i}+\theta_{i}}$.
b. $\lim _{t \rightarrow \infty} E[U(t)]=\sum_{i=1}^{n} \frac{\mu_{i}}{\mu_{i}+\theta_{i}}$.
c.

$$
\begin{aligned}
& P_{11}^{\prime}(t)=\mu P_{10}(t)-\lambda P_{11}(t), \\
& P_{10}^{\prime}(t)=\lambda P_{11}(t)-\mu P_{10}(t) .
\end{aligned}
$$

d. Substituting $P_{10}(t)=1-P_{11}(t)$ gives

$$
P_{11}^{\prime}(t)=\mu-(\lambda+\mu) P_{11}(t), \quad P_{11}(0)=1 .
$$

The solution is

$$
P_{11}(t)=\frac{\mu}{\lambda+\mu}+\frac{\lambda}{\lambda+\mu} e^{-(\lambda+\mu) t}, \quad t \geq 0 .
$$

e.

$$
P[U(t)=k]=\binom{n}{k} P_{11}^{k}(t)\left(1-P_{11}(t)\right)^{n-k} .
$$

4.

a. $\lambda<\mu_{A}+\mu_{B}$.
b. The states are $n, n \geq 0$, refering to the number in the system. For $n=1$, however, we distinguish between state A (server A is busy) and state B (server B is busy). The balance equations are

$$
\begin{aligned}
\lambda P_{0} & =\mu_{A} P_{A}+\mu_{B} P_{B}, \\
\left(\lambda+\mu_{A}\right) P_{A} & =\lambda P_{0}+\mu_{B} P_{2}, \\
\left(\lambda+\mu_{B}\right) P_{B} & =\mu_{A} P_{2}, \\
\left(\lambda+\mu_{A}+\mu_{B}\right) P_{n} & =\lambda P_{n-1}+\left(\mu_{A}+\mu_{B}\right) P_{n+1}, \quad n \geq 2,
\end{aligned}
$$

where $P_{1}=P_{A}+P_{B}$.
c.

$$
L=P_{A}+P_{B}+\sum_{n=2}^{\infty} n P_{n}
$$

d. The probability that an arbitrary arrival will get serviced in B is

$$
P_{A}+\frac{\mu_{B}}{\mu_{A}+\mu_{B}} \sum_{n=2}^{\infty} P_{n} .
$$

e.

$$
P_{0}=\frac{5}{17}, \quad P_{A}=\frac{9}{68}, \quad P_{B}=\frac{15}{68}, \quad P_{2}=\frac{3}{17}, \quad P_{n}=\left(\frac{1}{2}\right)^{n-2} \frac{3}{17} .
$$

Points:

1 a	b	c	d	e	2 a	b	c	d	e	3 a	b	c	d	e	4 a	b	c c	d	e
2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2

