TECHNISCHE UNIVERSITEIT EINDHOVEN
 Department of Mathematics and Computer Science

Solutions of exercises Stochastic Processes 2 (2S480) for week 3, 2006.
1.
a. If the state is the number of individuals at time t, we get a birth and death processs with

$$
\begin{aligned}
& \lambda_{n}=n \lambda+\theta, \quad n<N, \\
& \lambda_{n}=n \lambda \quad n \geq N, \\
& \mu_{n}=n \mu .
\end{aligned}
$$

b. Let P_{i} be the long-run probability that the system is in state i. Since this is also the proportion of time the system is in state i, we are looking for

$$
\sum_{i=3}^{\infty} P_{i} .
$$

We have

$$
P_{k} \mu_{k}=P_{k-1} \lambda_{k-1}, \quad k=1,2, \ldots
$$

This yields

$$
\begin{aligned}
& P_{1}=\frac{\theta}{\mu} P_{0}=\frac{1}{2} P_{0} \\
& P_{2}=\frac{\theta+\lambda}{2 \mu} P_{1}=\frac{1}{2} P_{1}=\frac{1}{4} P_{0} \\
& P_{3}=\frac{\theta+2 \lambda}{3 \mu} P_{2}=\frac{1}{2} P_{2}=\frac{1}{8} P_{0}
\end{aligned}
$$

and for $k \geq 3$,

$$
P_{k}=\frac{(k-1) \lambda}{k \mu} P_{k-1}=\frac{k-1}{k} \frac{1}{2} P_{k-1}=\cdots=\frac{3}{k}\left(\frac{1}{2}\right)^{k-3} P_{3} .
$$

Hence

$$
\sum_{k=3}^{\infty} P_{k}=P_{3} \sum_{k=3}^{\infty} \frac{3}{k}\left(\frac{1}{2}\right)^{k-3}=24 P_{3} \sum_{k=3}^{\infty} \frac{1}{k}\left(\frac{1}{2}\right)^{k} .
$$

Since

$$
\sum_{k=1}^{\infty} \frac{1}{k} x^{k}=-\log (1-x),
$$

we get

$$
\sum_{k=3}^{\infty} P_{k}=P_{3}(24 \log 2-15) .
$$

Because all probabilities add up to 1, we have

$$
P_{0}\left(1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}(24 \log 2-15)\right)=1 .
$$

So

$$
P_{0}^{-1}=3 \log 2-\frac{1}{8},
$$

and thus finally,

$$
\sum_{k=3}^{\infty} P_{k}=\frac{24 \log 2-15}{24 \log 2-1} \approx 0.105
$$

2. With the number of customers in the shop as the state, we get a birth and death process with

$$
\lambda_{0}=\lambda_{1}=3, \quad \mu_{1}=\mu_{2}=4
$$

Therefore

$$
P_{1}=\frac{3}{4} P_{0}, \quad P_{2}=\frac{3}{4} P_{1}=\left(\frac{3}{4}\right)^{2} P_{0} .
$$

And since $P_{0}+P_{1}+P_{2}=1$, we get

$$
P_{0}=\frac{16}{37}
$$

a. The average number of customers in the shop is

$$
P_{1}+2 P_{2}=\frac{30}{37}
$$

b. The proportion of the customers that enter the shop is

$$
\frac{\lambda\left(1-P_{2}\right)}{\lambda}=1-P_{2}=\frac{28}{37} .
$$

c. Now $\mu=8$, so

$$
P_{0}=\frac{64}{97} .
$$

So the proportion of the customers that enter the shop is

$$
1-P_{2}=\frac{88}{97}
$$

The rate of added customers is therefore

$$
\lambda\left(\frac{88}{97}\right)-\lambda\left(\frac{28}{37}\right) \approx 0.45
$$

The business he does would improve by 0.45 customers per hour.
3. With the number of customers in the system as the state, we get a birth and death process with

$$
\lambda_{0}=\lambda_{1}=\lambda_{2}=3, \quad \lambda_{i}=0, i \geq 4, \quad \mu_{1}=2, \mu_{2}=\mu_{3}=4
$$

Therefore the balance equations reduce to

$$
P_{1}=\frac{3}{2} P_{0}, \quad P_{2}=\frac{3}{4} P_{1}=\frac{9}{8} P_{0}, \quad P_{3}=\frac{3}{4} P_{2}=\frac{27}{32} P_{0} .
$$

And therefore,

$$
P_{0}=\left(1+\frac{3}{2}+\frac{9}{8}+\frac{27}{32}\right)^{-1}=\frac{32}{143}
$$

a. The fraction of potential custoemrs that enter the system is

$$
\frac{\lambda\left(1-P_{3}\right)}{\lambda}=1-P_{3}=\frac{116}{143}
$$

b. With a server working twice as fast we would get

$$
P_{1}=\frac{3}{4} P_{0}, \quad P_{2}=\frac{3}{4} P_{1}=\left(\frac{3}{4}\right)^{2} P_{0}, \quad P_{3}=\left(\frac{3}{4}\right)^{3} P_{0}
$$

and

$$
P_{0}=\left(1+\frac{3}{4}+\left(\frac{3}{4}\right)^{2}+\left(\frac{3}{4}\right)^{3}\right)^{-1}=\frac{64}{175} .
$$

So that now

$$
1-P_{3}=\frac{148}{175}
$$

4. Say the state is 0 if the machine is up, say it is in state i when it is down due to a type i failure, $i=1,2$. The balance equations for the limiting probabilities are as follows.

$$
\begin{aligned}
\lambda P_{0} & =\mu_{1} P_{1}+\mu_{2} P_{2}, \\
\mu_{1} P_{1} & =\lambda p P_{0}, \\
\mu_{2} P_{2} & =\lambda(1-p) P_{0}, \\
P_{0}+P_{1}+P_{2} & =1 .
\end{aligned}
$$

These equations are easily solved to give the results

$$
P_{0}=\left(1+\lambda p / \mu_{1}+\lambda(1-p) / \mu_{2}\right)^{-1}, \quad P_{1}=\lambda p P_{0} / \mu_{1}, \quad P_{2}=\lambda(1-p) P_{0} / \mu_{2}
$$

