TECHNISCHE UNIVERSITEIT EINDHOVEN
 Department of Mathematics and Computer Science
 Solutions of exercises Stochastic Processes 2 (2S480) for week 5, 2006.

1.

a. The extinction probability π_{0} is the smallest positive solution of

$$
\pi_{0}=\frac{1}{5}+\frac{3}{5} \pi_{0}+\frac{1}{5} \pi_{0}^{2}
$$

yielding $\pi_{0}=1$.
b. Similar as part a, but now we find $\pi_{0}=\frac{1}{2}$.
c. The extinction probability π_{0} is the square of the answers in part a and b.
2. Here we have

$$
\mu=\frac{1-\alpha}{3}(0+2+3)+\alpha=\frac{5-2 \alpha}{3} .
$$

a. $E\left[X_{n}\right]=E\left[X_{0}\right] \mu^{n}=\left(\frac{5-2 \alpha}{3}\right)^{n}$.
b. The extinction probability π_{0} is the smallest positive solution of

$$
\pi_{0}=\frac{1-\alpha}{3}\left(1+\pi_{0}^{2}+\pi_{0}^{3}\right)+\alpha \pi_{0},
$$

yielding

$$
\pi_{0}=\sqrt{2}-1 .
$$

c. Clearly,

$$
E\left[X_{0}\right]=\sum_{n=1}^{\infty} n\left(\frac{1}{2}\right)^{n}=2
$$

so $E\left[X_{n}\right]=2\left(\frac{5-2 \alpha}{3}\right)^{n}$. Further,

$$
\pi_{0}=\sum_{n=1}^{\infty}\left(\frac{1}{2}\right)^{n}(\sqrt{2}-1)^{n}=\frac{\sqrt{2}-1}{3-\sqrt{2}} \quad(<\sqrt{2}-1) .
$$

3.

a. By conditioning on the first event and using that all particles behave independently of each otther, we get

$$
\pi_{0}=\frac{\mu}{\lambda+\mu}+\frac{\lambda}{\lambda+\mu} \pi_{0}^{2},
$$

the roots of which are 1 and $\frac{\mu}{\lambda}$. Hence, if $\lambda \leq \mu$, then $\pi_{0}=1$, and otherwise, $\pi_{0}=\frac{\mu}{\lambda}$.
b. Clearly $\left\{X_{t}, t \geq 0\right\}$ is a birth and death process with birth rates $\lambda_{n}=n \lambda$ and death rates $\mu_{n}=n \mu, n=1,2, \ldots$ and state 0 is an absorbing state.
4.
a. S_{n} is Poisson with mean $n \mu$.
b.

$$
\begin{aligned}
P(N(t)=n) & =P(N(t) \geq n)-P(N(t) \geq n+1) \\
& =P\left(S_{n} \leq t\right)-P\left(S_{n+1} \leq t\right) \\
& =\sum_{k=0}^{\lfloor t\rfloor} e^{-n \mu} \frac{(n \mu)^{k}}{k!}-\sum_{k=0}^{\lfloor t\rfloor} e^{-(n+1) \mu} \frac{((n+1) \mu)^{k}}{k!} .
\end{aligned}
$$

5.

a. No. Suppose, for instance, that the interarrival times of the first renewal process are identically equal to 1 . Let the second be a Poisson process with rate λ. If the first interarrival time of the process $\{N(t), t \geq 0\}$ is equal to $3 / 4$, then we can be certain that the next one is less than or equal to $1 / 4$.
b. No. Use the same processes as in a for a counterexample. For instance, the first interarrival will equal 1 with probability $e^{-\lambda}$. The probability will be different for the next interarrival.
c. No, because of a or b .

