TECHNISCHE UNIVERSITEIT EINDHOVEN
 Department of Mathematics and Computer Science

Solutions of exercises Stochastic Processes 2 (2S480) for week 8, 2006.

1. Let W_{q} denote the amount of time that a customer spends in the queue. Then

$$
\begin{aligned}
P\left(W_{q} \leq x\right) & =\sum_{n=0}^{\infty} P\left(W_{q} \leq x \mid n \text { in system when he arrives }\right)\left(\frac{\lambda}{\mu}\right)^{n}\left(1-\frac{\lambda}{\mu}\right) \\
& =\left(1-\frac{\lambda}{\mu}\right) \sum_{n=0}^{\infty} P(\text { sum of } n \text { service times } \leq x)\left(\frac{\lambda}{\mu}\right)^{n} \\
& =\left(1-\frac{\lambda}{\mu}\right) \sum_{n=0}^{\infty}\left(\frac{\lambda}{\mu}\right)^{n} \sum_{k=n}^{\infty} e^{-\mu x} \frac{(\mu x)^{k}}{k!} \\
& =\left(1-\frac{\lambda}{\mu}\right) e^{-\mu x} \sum_{k=0}^{\infty} \frac{(\mu x)^{k}}{k!} \sum_{n=0}^{k}\left(\frac{\lambda}{\mu}\right)^{n} \\
& =e^{-\mu x} \sum_{k=0}^{\infty} \frac{(\mu x)^{k}}{k!}\left[1-\left(\frac{\lambda}{\mu}\right)^{k+1}\right] \\
& =e^{-\mu x}\left(e^{\mu x}-\frac{\lambda}{\mu} e^{\lambda x}\right) \\
& =1-\frac{\lambda}{\mu} e^{-(\mu-\lambda) x} .
\end{aligned}
$$

2. Take the state to be the number of customers at server 1 . The balance equations are

$$
\begin{aligned}
\mu P_{0} & =\mu P_{1}, \\
2 \mu P_{j} & =\mu P_{j+1}+\mu P_{j-1}, \quad 1 \leq j<n, \\
\mu P_{n} & =\mu P_{n-1}, \\
1 & =\sum_{j=0}^{n} P_{j} .
\end{aligned}
$$

It is easy to check that the solution to these equations is that all the P_{j} 's are equal, and so $P_{j}=1 /(n+1), j=0, \ldots, n$.
3.
a.

$$
\begin{aligned}
\lambda P_{0} & =\alpha \mu P_{1} \\
(\lambda+\alpha \mu) P_{n} & =\lambda P_{n-1}+\alpha \mu P_{n+1}, \quad n \geq 1 .
\end{aligned}
$$

These are exactly the same equations as in the $M / M / 1$ with $\alpha \mu$ replcaing μ. Hence,

$$
P_{n}=\left(\frac{\lambda}{\alpha \mu}\right)^{n}\left(1-\frac{\lambda}{\alpha \mu}\right), \quad n \geq 0
$$

and we need the condition $\lambda<\alpha \mu$.
b. If T is the waiting time until the customer first enters service, then by conditioning on the number present when he arrives yields

$$
\begin{aligned}
E[T] & =\sum_{n=0}^{\infty} E[T \mid \mathrm{n} \text { present }] P_{n} \\
& =\sum_{n=0}^{\infty} \frac{n}{\mu} P_{n} \\
& =\frac{L}{\mu}
\end{aligned}
$$

Since $L=\sum_{n=0}^{\infty} n P_{n}$, and the P_{n} are the same as in the $M / M / 1$ with λ and $\alpha \mu$, we have that

$$
L=\frac{\lambda}{\alpha \mu-\lambda},
$$

and so

$$
E[T]=\frac{\lambda}{\mu(\alpha \mu-\lambda)}
$$

c. $P($ enters service exactly n times $)=(1-\alpha)^{n-1} \alpha$.
d. This is the expected number of services times the mean service time $=1 /(\alpha \mu)$.
e. The distribution is easily seen to be memoryless. Hence, it is exponential with rate $\alpha \mu$.
Note: By Little's law it follows that the expected total time spent in the system is $L / \lambda=1 /(\alpha \mu-\lambda)$.
4. There are four states, namely $0,1_{A}, 1_{B}, 2$. The balance equations are

$$
\begin{aligned}
2 P_{0} & =2 P_{1_{B}} \\
4 P_{1_{A}} & =2 P_{0}+2 P_{2}, \\
4 P_{1_{B}} & =4 P_{1_{A}}+4 P_{2}, \\
6 P_{2} & =2 P_{1_{B}} \\
1 & =P_{0}+P_{1_{A}}+P_{1_{B}}+P_{2} .
\end{aligned}
$$

This yields

$$
P_{0}=\frac{3}{9}, \quad P_{1_{A}}=\frac{2}{9}, \quad P_{1_{B}}=\frac{3}{9}, \quad P_{2}=\frac{1}{9} .
$$

a. $P_{0}+P_{1_{B}}=\frac{2}{3}$.
b. By conditioning upon whether the state was 0 or 1_{B} when he entered we get that the desired probability is given by

$$
\frac{1}{2}+\frac{1}{2} \cdot \frac{2}{6}=\frac{2}{3} .
$$

c. $P_{1_{A}}+P_{1_{B}}+2 P_{2}=\frac{7}{9}$.
d. Again, condition on the state when he enters to obtain

$$
\frac{1}{2}\left[\frac{1}{4}+\frac{1}{2}\right]+\frac{1}{2}\left[\frac{1}{4}+\frac{2}{6} \cdot \frac{1}{2}\right] \frac{7}{12} .
$$

This could also have been obtained from a. and b. by Little's formula $W=\frac{L}{\lambda_{a}}$. That is,

$$
W=\frac{\frac{7}{9}}{2 \cdot \frac{2}{3}}=\frac{7}{12} .
$$

