TECHNISCHE UNIVERSITEIT EINDHOVEN

Department of Mathematics and Computer Science
Solutions of exercises Stochastic Processes 2 (2S480) for week 9, 2006.

1. The state space can be taken to consist of states $(0,0),(0,1),(1,0),(1,1)$, where the i th component of the state refers to the number of customers at server $i, i=1,2$. The balance equations are

$$
\begin{aligned}
2 P_{0,0} & =6 P_{0,1}, \\
8 P_{0,1} & =4 P_{1,0}+4 P_{1,1}, \\
6 P_{1,0} & =2 P_{0,0}+6 P_{1,1}, \\
10 P_{1,1} & =2 P_{0,1}+2 P_{1,0},
\end{aligned}
$$

and the normalization equation is

$$
P_{0,0}+P_{0,1}+P_{1,0}+P_{1,1}=1 .
$$

Solving these equations gives $P_{0,0}=1 / 2, P_{0,1}=1 / 6, P_{1,0}=1 / 4$ and $P_{1,1}=1 / 12$.
a. $P_{1,1}=1 / 12$.
b. $W=\frac{L}{\lambda_{a}}=\frac{P_{0,1}+P_{1,0}+2 P_{1,1}}{2\left(1-P_{1,1}\right)}=7 / 22$.
c. $\frac{P_{0,0}+P_{0,1}}{1-P_{1,1}}=8 / 11$.
2. The state is the pair $(i, j), i=0,1,0 \leq j \leq N$, where i signifies the number of customers in service and j the number in orbit. The balance equations are

$$
\begin{aligned}
(\lambda+j \theta) P_{0, j} & =\mu P_{1, j}, \quad j=0, \ldots, N, \\
(\lambda+\mu) P_{1, j} & =\lambda P_{0, j}+(j+1) \theta P_{0, j+1}, \quad j=0, \ldots, N-1, \\
(\lambda+\mu) P_{1, N} & =\lambda P_{0, N} .
\end{aligned}
$$

c. $1-P_{1, N}$.
d. The average number of customers in the system is

$$
L=\sum_{i, j}(i+j) P_{i, j} .
$$

Hence, the average time that an entering customer spends in the system is $W=$ $L / \lambda\left(1-P_{1, N}\right)$, and the average time that an entering customer spends in orbit is $W-1 / \mu$.
3.
a. State $n, n \geq 0$, refers to the number of customers in the system, where for $n=1$ we distinguish between state A (server A is busy) and state B (server B is busy). The balance equations are

$$
\begin{aligned}
\lambda P_{0} & =\mu_{A} P_{A}+\mu_{B} P_{B} \\
\left(\lambda+\mu_{A}\right) P_{A} & =\alpha \lambda P_{0}+\mu_{B} P_{2} \\
\left(\lambda+\mu_{B}\right) P_{B} & =(1-\alpha) \lambda P_{0}+\mu_{A} P_{2} \\
\left(\lambda+\mu_{A}+\mu_{B}\right) P_{n} & =\lambda P_{n-1}+\left(\mu_{A}+\mu_{B}\right) P_{n+1}, \quad n \geq 2
\end{aligned}
$$

where $P_{1}=P_{A}+P_{B}$.
b.

$$
L=P_{A}+P_{B}+\sum_{n=2}^{\infty} n P_{n}
$$

The average number of idle servers is $2 P_{0}+P_{A}+P_{B}$.
c. Let β denote the probability that an arbitrary arrival will get serviced in A. Then

$$
\beta=\alpha P_{0}+P_{B}+\frac{\mu_{A}}{\mu_{A}+\mu_{B}} \sum_{n=2}^{\infty} P_{n} .
$$

Alternatively, β can be computed by using Little's law. We have

$$
W_{Q}=\frac{L_{Q}}{\lambda}
$$

where

$$
L_{Q}=\sum_{n=2}^{\infty}(n-2) P_{n} .
$$

Then β follows from the relation

$$
W=\frac{L}{\lambda}=W_{Q}+\beta \frac{1}{\mu_{A}}+(1-\beta) \frac{1}{\mu_{B}} .
$$

4. States are $0,1,1^{\prime}, 2,2^{\prime}, \ldots, k-1,(k-1)^{\prime}, k, k+1, \ldots$ with the following interpretation

$$
\begin{aligned}
0 & =\text { system is empty, } \\
n & =n \text { in system and server is working, } \\
n^{\prime} & =n \text { in system and server is idle, } \quad n=1,2, \ldots, k-1 .
\end{aligned}
$$

The balance equations are

$$
\begin{aligned}
\lambda P_{0} & =\mu P_{1}, \\
(\lambda+\mu) P_{0} & =\mu P_{2}, \\
\lambda P_{n^{\prime}} & =\lambda P_{(n-1)^{\prime}}, \quad n=1, \ldots, k-1, \\
(\lambda+\mu) P_{k} & =\lambda P_{(k-1)^{\prime}}+\lambda P_{k-1}+\mu P_{k+1}, \\
(\lambda+\mu) P_{n} & =\lambda P_{n-1}+\mu P_{n+1}, n>k .
\end{aligned}
$$

b.

$$
W_{Q}=\frac{k-1}{\lambda} P_{0}+\sum_{n=1}^{k-1}\left[\frac{k-1-n}{\lambda}+\frac{n}{\mu}\right] P_{n^{\prime}}+\sum_{n=1}^{\infty} \frac{n}{\mu} P_{n},
$$

or via Little's law,

$$
W_{Q}=\frac{L_{Q}}{\lambda}
$$

where

$$
L_{Q}=\sum_{n=1}^{k-1} n P_{n^{\prime}}+\sum_{n=1}^{\infty}(n-1) P_{n} .
$$

c. $\lambda<\mu$.

