TECHNISCHE UNIVERSITEIT EINDHOVEN

Faculteit Wiskunde en Informatica
Exam Stochastische Processen 2 (2S480) on 19 November 2003, 9.00-12.00 hours.
Please write the answers and reasonings with a clear formulation.

1. Consider a Markov process $\{X(t), t \geq 0\}$ with four states (A, B, C, D) and with the following Q-matrix:

$$
\left(\begin{array}{cccc}
-1 & \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \tag{1}\\
\frac{1}{3} & -2 & 1 & \frac{2}{3} \\
\frac{1}{3} & \frac{2}{3} & -2 & 1 \\
\frac{1}{3} & 1 & \frac{2}{3} & -2
\end{array}\right)
$$

a. [3 pt.] Determine the equilibrium distribution (i.e., the limiting distribution) of the Markov process (Hint: argue that the equilibrium probabilities for the states B, C and D are equal).
b. [2 pt.] Determine the matrix P of one-step transition probabilities of the Markov chain that belongs to this Markov process (at jump epochs).
c. [3 pt.] Determine the equilibrium distribution of this Markov chain, by using the equilibrium distribution for the Markov process found under a).
d. [2 pt.] Explain how $P(X(t)=A \mid X(0)=A)$ can be obtained with the help of the uniformization method (I don't ask for a calculation).
2. Consider the birth-and-death process $\{X(t), t \geq 0\}$ on the state space $\{0,1, \ldots, n\}$, where $X(0)=0$. The birth rate is λ and the death rate is μ, with the following exception: when state n is reached, the process does not change anymore.
a. [2 pt.] Give the Q-matrix of this process.
b. [3 pt.] Give the forward differential equations of Kolmogorov for the process, for the probabilities $P(X(t+s)=i \mid X(s)=i), i=0, \ldots, n$.
c. [3 pt.] Let $n=1$. Determine $P(X(t)=0 \mid X(0)=0)$ and $P(X(t)=1 \mid X(0)=0)$.
d. [2 pt.] Let $n=2$. Determine the expected time until state 2 is reached.
3. Consider a branching process $\left\{X_{n}, n=0,1, \ldots\right\}$, starting with one particle: $X_{0}=1$. The number of offspring Z of one particle equals i with probability p_{i}, where $p_{0}=c, p_{1}=\frac{1}{6}$, $p_{2}=\frac{5}{6}-c$.
a. [3 pt.] For which values of c is extinction of the population certain?
b. [3 pt.] Determine $E\left(X_{n}\right), n=1,2, \ldots$.
c. [4 pt.] Same questions if the number of offspring per particle in the even generations is as above (hence $\left.P\left(X_{1}=i\right)=p_{i}, i=0,1,2\right)$, whereas in the odd generations, the number of offspring of a particle is Poisson distributed with mean 2 (Hint: observe that $\left\{X_{2 n}, n=0,1, \ldots\right\}$ again is an ordinary branching process).
4. Consider the renewal process $\{N(t), t \geq 0\}$, with distribution $F(\cdot)$ and density $f(\cdot)$ of the intervals between successive renewals.
a. [3 pt.] Argue that $m(t):=E(N(t))$ satisfies the following equation:

$$
m(t)=F(t)+\int_{0}^{t} m(t-x) f(x) \mathrm{d} x, \quad t \geq 0
$$

b. [4 pt.] In the remainder of the exercise, take $f(t)=\lambda^{k} \frac{t^{k-1}}{(k-1)!} \mathrm{e}^{-\lambda t}$, i.e., the Erlang- k density. Determine the Laplace-Stieltjes transform of the renewal function $m(t)$ and of [$\left.E\left(S_{N(t)+1}\right)-t\right]$.
c. [3 pt.] What is $\lim _{t \rightarrow \infty} \frac{m(t)}{t}$?

