TECHNISCHE UNIVERSITEIT EINDHOVEN

Faculteit Wiskunde en Informatica

Tentamen Stochastische Processen 2 (2S480) op 2 juli 2002, 09.00-12.00 uur.

1. Consider a Markov process with three states (A, B, C) and with the following Q -matrix:

$$
\left(\begin{array}{ccc}
-4 & 2 & 2 \tag{1}\\
3 & -5 & 2 \\
3 & 1 & -4
\end{array}\right)
$$

a) [2 pt.] Determine the matrix P of one-step transition probabilities of the Markov chain belonging to this Markov process.
b) [3 pt.] Determine the equilibrium distribution (i.e., limiting distribution) of the Markov process.
c) [3 pt.] What is the relation between the equilibrium distributions of the Markov chain and the Markov process?
d) [2 pt.] SKIP PART d).
2. Consider a factory with K machines. A machine works for an exponentially distributed time, with mean $1 / \lambda$, and then breaks down. There is one repairman, who repairs broken machines in order of breakdown. The repair times are exponentially distributed with mean $1 / \mu$. All mentioned times are independent. A repaired machine immediately goes back into operation. Let $\left\{X_{t}, t \geq 0\right\}$ be the number of operational machines at time t.
a) [2 pt.] Argue that $\left\{X_{t}, t \geq 0\right\}$ is a Markov process.
b) [2 pt.] Give the Q-matrix of transition rates of this Markov process.
c) [2 pt.] For which values of λ and μ does the equilibrium distribution of this Markov process exist?
d) [2 pt.] Give the equilibrium distribution in case $\mu=\lambda$.
e) [4 pt .] Let $K=1$ and $X(0)=0$. Give the forward differential equations of Kolmogorov for the Markov process $\left\{X_{t}, t \geq 0\right\}$, and solve these equations.
3. Consider the $E_{2} / M / 2 / 4$ queue. This is a system with Erlang-2 distributed arrival intervals, 2 servers and a waiting room of size 2 . Service times are exponentially distributed.
a) [3 pt.] We are interested in the number of customers in the system. Define a suitable Markov process for this system and draw the corresponding state-transition diagram.
b) [3 pt.] Give all (global) balance equations.
4. Consider the following branching process. Let X_{n} be the number of particles in generation $n ; X_{0}=1$. Each particle, independently of other particles, gives birth to j particles with probability $p_{j}, j=0,1, \ldots$. The generating function of this distribution is given by $P(z)=\sum_{j=0}^{\infty} p_{j} z^{j}=\mathrm{e}^{-\lambda(1-z)} \frac{1-c}{1-c z}$, with $0<\lambda<1 / 2$ en $0<c<1$.
a) [2 pt.] What is the expected number of descendants of a particle, and what is the probability that a particle has exactly one descendant?
b) [2 pt.] What is $\mathrm{E}\left(X_{n}\right)$?
c) [3 pt.] For which values of c (as function of λ) will the population extinguish with probability one?
d) [2 pt.] Consider two independent branching processes $\left\{X_{1, n}, n=0,1, \ldots\right\}$ and $\left\{X_{2, n}, n=\right.$ $0,1, \ldots\} . X_{1,0}=X_{2,0}=1$. The generating function of the number of children of a particle in the first branching process is $\mathrm{e}^{-\lambda(1-z)}$, and for the second process it is $\frac{1-c}{1-c z}$. What is the probability that after two generations both populations are no longer existent?
e) [3 pt.] What is the sum of the expected numbers of particles in the n-th generation of the two branching processes; explain the fact that this result is for $n=1$ the same as in question b).

