TECHNISCHE UNIVERSITEIT EINDHOVEN
Department of Mathematics and Computer Science Exercises Stochastic Processes 2 (2S480) for week 2, 2006.

1. Consider the following queueing model: customers arrive at a service station according to a Poisson process with rate λ. There are c servers; the service times are exponential with rate μ. If an arriving customer finds c servers busy, then he leaves the system immediately.
a. Model this system as a birth and death process.
b. Suppose now that there are infinitely many servers $(c=\infty)$. Again model this system as a birth and death process.
2. In Example 6.11 it is shown, using the backward equations, that

$$
P_{00}^{\prime}(t)=\mu-(\mu+\lambda) P_{00}(t) .
$$

a. Derive this result using the forward equations.
b. Derive a differential equation for $P_{11}(t)$ in two ways: using the forward and backward equations.
c. Suppose the machine is working at time 0 . What is the probability that the machine is also working at time t ?
3. Exercise 6.8.
4. Exercise 6.10 (but you do not have to verify that the transition probabilities satisfy the forward and backward equations).

