
System validation, 2IW26

Jan Friso Groote (J.F.Groote@tue.nl, HG 6.75, 040-247 5003).
Mohammad Mousavi (M.R.Mousavi@tue.nl, HG 6.79, 040-247 2993).
http://www.win.tue.nl/~jfg/educ/2IW26/herfst2010/overzicht.html

The purpose of this course is to learn how to specify behaviour of systems and to experience the design
of a system where you can prove that the behaviour is correct. So, you will learn how to formally
specify requirements and to prove (or disprove) them on the behaviour. With a practical assignment
you will experience how to apply the techniques in practice.

The first block of the semester will be dedicated to learn the basics of the specification language
mCRL2 and to use it as a manual specification and verification tool. In the first block there will
be 2x2hours of lectures per week, on wednesdays and thursdays. The second block is devoted to an
assignment, which must be finished before the examination period at the end of the semester. The
goal of the assignment is to apply the techniques and tools to the design of a small distributed and/or
embedded system. The purpose is to design this system such that it is proven to comply with all the
requirements which must have been formulated in advance.

In the second block there will be a few lectures on wednesdays. Directly after the first block there
will be an examination. There is one possibility to retry this exam, at the end of the semester.

The marks for the exam and the assignment both contribute equally to the final score. The final
mark is the average rounded to a whole number in the ordinary way (0.5 is rounded up). Failing for
the course means that both the exam and the assignment must be redone next year. It is possible to
commence with the assignment without having passed the exam.

Literature

The course material consists of

• J.F. Groote and M.A. Reniers. Modelling and analysis of communicating systems. Lecture
notes. 2010. Chapters 1, 2, 4, 5, 6, 7.1-7.1.4, 8 (not 8.8.3, 8.7), 9, 10, 11.

• See www.mcrl2.org for the tools, manual pages etc.

The lecture notes by Groote and Reniers can be obtained at the office of the secretary (Tineke
van de Bosch, 247 5010, HG 6.74). Otherwise, the documents can be downloaded from the web-
site (www.win.tue.nl/~jfg/educ/2IW26/herfst2010/overzicht.html). The exam will cover the
indicated parts of the lecture notes as well as everything said during the lectures.

Assignment

The assignment consists of designing a controller for a small distributed and/or embedded system.
Below a suggestion for such a system can be found. It deals with a small packet storage system. But
it is possible to design any embedded controller or distributed algorithm provided you obtain approval
by the supervisor of your assignment. The assignment can be carried out in groups of one to four
persons.

Carrying out the assignment consists of executing the following steps:

1. Identify in words global requirements for the whole system. Typical requirements are ‘packets
are never stored at places that are occupied’. These requirements are initially to be described
in natural language.

2. Identify the interactions that are relevant for your system. Describe clearly but compactly the
meaning of each interaction in words.

1



C1 C2

C3

C4

C5

Figure 1: A temporary storage with two elevators

3. Translate the global requirements in terms of these interactions.

4. Describe a compact architecture of the structure of the system.

5. Describe the behaviour of all controllers in the architecture using mCRL2.

6. Verify using the toolset that all requirements given in item 3 above are valid for the design in
mCRL2.

The assignment must be documented in a technical report that covers all items above. This report must
be a concise technical account of the system and must be written such that from it the requirements,
action interface, architecture and behavioural design can be easily understood. It must also be clear
how the requirements are verified, in such a way that this can easily be redone without consulting any
of the authors of the report.

The default assignment of this year consists of a small packet storage system (see figure 1). The
assignment is inspired by an operational product manufactured by a company called VanDerLande,
located in Veghel, appr. 20 km from Eindhoven (www.vanderlande.nl). This company produces
luggage handling-, packet storage- and parcel distribution systems.

Packets arrive at the left (at C1). Using a unidirectional conveyor belt packets are moved to the
elevators (C3 and C4). With the two elevators they can be moved up and down and be stored in the
rack (C5). The lowest elevator can move to the level below the conveyor belt, but it cannot reach the
highest rack. The upper elevator can reach the highest rack, but cannot reach the lowest position.
The elevators are mounted above each other, which means that they can not reach the same position.
Self-evidently, they cannot pass each other either. Each platform of the elevators can store at most
one packet.

Each level at the rack can contain exactly one packet. When a platform reaches the right level,
instructions must be given to the rack and the elevator to move a packet from or onto the elevator
platform. This also holds for the conveyors. When a platform is at the same level as the conveyors,
the platform and the conveyor hardware must be instructed to move the packet.

If a packet arrives at this mini warehouse (C1), the system can decide to accept the packet, but it
can also decide to leave it at the entrance if there is no space to store it. However, it is appreciated that

2



an as large as possible number of packets can be stored, where if possible also the elevator platforms
can be used as storage positions.

At the right (C2) packets can be ordered which will then be delivered in the same order as they have
been requested. It can be assumed that packets can always be accepted by whatever device requested
the packets.

There are five controllers C1, C2, C3, C4 and C5 that govern the behaviour of the system. The
assignment is to model the behaviour of these controllers and prove that they cooperate well. Each
controller is only allowed to have knowledge of its own device. So, only C5 is allowed to know which
levels of the rack are filled with which packets. And similarly, only C3 knows to which level the upper
elevator is travelling. The purpose of this is to make each device with its controller modular and
therefore reusable in other contexts.

This means that if a packet is ordered at the controller C2, it must request all the other controllers to
find out whether a packet is present and where it is located. Subsequently, a plan must be negotiated
to move the packet to the exit. Note that at the same time packets can enter the system, which must
be stored simultaneously.

If you work on this assignment, you will find out that the description, although quite precise at
first sight, still leaves quite a number of aspects undetermined. This is quite common, and by itself
already a reason to make a formal description of the behaviour of the controllers. In cases where the
behaviour is not well described in this text, you must make your own choice regarding the desired
behaviour. When you feel that deviating from this text would yield a system with a nicer behaviour
you are allowed to do so, provided you can defend your choice.

What is important is that if packets are present in the system, the system will always deliver
them. Under no circumstance the system may deadlock or be able to only deliver the packets in
predetermined orders. Furthermore, packets may not bump into each other. This also holds for the
elevators.

In a realistic system, one may also have to deal with failing motors or other mishap, meaning that
an elevator gets stuck or a storage level cannot be used. Sometimes, it is even the case that packets
are removed from the storage rack or drop to the floor. In such cases the system must inform the
outside world that something has gone wrong. It is not necessary to deal with these situations in
this assignment. It is however important to realise that the current system is quite a simplification of
those systems that occur in reality.

Tool set

See www.mcrl2.org and the webpage of the course.

Global time schedule

Below a global time schedule is indicated. Furthermore, there are exercises indicated, which can be
treated during the lectures. Students are supposed to make these exercises before the lectures, and
compare their answers with those of the lecturer. The exercises can be found in the lecture notes.

1/2-9-2010. Chapter 1. Sections 2.1–2.3. Sections 4.1 and 4.3. Transition systems, basic processes,
process equivalences, conditional operator, time. Elementary reasoning with axioms.
Exercises 2.2.2, 2.3.2, 2.3.3, 2.3.4, 2.3.6, 2.3.9, 4.1.3, 4.1.4, 4.1.5, 4.3.3.

8/9-9-2010. Section 4.2. Appendix A. Section 8.4. Abstract data types. Constructors. Built in data
types, bool, quantifiers, pos, nat, int, real. list, set, bag, functions, structured type.
Difference between ≈ and =. Appendix A, induction. Exercise 4.2.1, 4.2.2, 4.2.3, 4.2.5,
4.2.6, 4.2.7, 4.2.8, 4.2.12, 4.2.14, 8.4.1.

3



15/16-9-2010. Section 4.1.5 (cont.), 7.1–7.1.4, 8.1–8.3, 8.5. Lambda calculus. Sum axioms. Sum
elimination theorem. Precise proof system. Exercise 4.1.6, 8.4.2, 8.4.3, 8.5.2, 8.5.3, 8.5.4,
8.5.5.

22/23-9-2010. Section 4.1.6, 8.6. Recursion. RSP. Proving recursive specifications equal. Exercises.
4.1.7, 4.1.8, 8.6.4, 8.6.5, 8.6.6, 8.6.9.

29/30-9-2010. Section 2.4, 2.5, 4.4, 4.5, 8.8. Parallel processes and hiding. Expansion law. Communi-
cation, multi-actions. Exercise 2.5.4, 2.5.5, 2.5.6, 4.4.5, 4.5.1, 4.5.2, 8.8.1, 8.8.2.

6/7-9-2010. Chapter 9. Linearisation of processes. CL-RSP, CL-RSP with invariants. Exercise 9.1.4,
9.2.10, 9.2.12. Chapter 10. Confluence and τ -priorisation. Exercise 10.1.3, 10.1.4, 10.2.6.

13/14-10-2010. Chapter 5. The modal µ-calculus with data. Exercise 5.1.2, 5.2.1, 5.3.1, 5.3.2, 5.4.1,
5.5.1, 5.5.2.

20/21-10-2010. Chapter 11. Cones and foci theorem Exercise 11.1.3, 11.1.4, 11.1.5.

4-11-2010. Exam (14:00-17:00). Closing date for registration: 17-10-2010.

10-11-2010. Assignment. Process visualisation.

17-11-2010. The toolset and its philosophy.

24-11-2010. State space generation and term rewriting.

1/8/15-12-2010. Reserve.

3-1-2011. Last date to hand in the pre-final report for the assignment.

5/12-1-2011. Reserve.

14-1-2011. Last date to hand in the final report for the assignment.

17-1-2011. Exam (retry, 14:00-17:00). Closing date for registration 9-1-2011.

4


