Exam System Validation, 2IW26
Friday, April 11, 2014, 14:00-17:00

It is neither allowed to use the study material nor a computer. The axioms formulated in the
book are given as an appendix to this exam. The answers to the questions can be formulated
in English or Dutch. This exam consists of 6 questions. Good luck!

1. (a)

Specify a data type T consisting of a tree structure where the leaves contain a natu-
ral number. A typical instance of a tree is node(leaf (11), node (leaf (4), leaf (2014))).
The data type must have a recogniser is_leaf that yields true iff it is applied to a
tree consisting of a single leaf.

Prove (precisely) that the tree consisting of a single leaf is not equal to a tree
containing subtrees.

Define a function total_sum : T"— N that gives the total sum of all numbers in the
tree.

Describe a ‘tree-splitter’-process that reads a tree via an action in and forwards
both subtrees via two occurrences of an action out. The tree consisting of only a
leaf is forwarded as a whole. Extend this splitter with an option to request the
cumulative sum of all numbers in all trees that the splitter has seen since startup,
or since the last reset. For this purpose it is necessary to add a reset facility to the
the splitter.

2. Consider the data type E defined as struct e; | e3 | e3. Prove exactly using the process
axioms and the rules and equations for the data type F that

D X(e) = X(er) + X(e2) + X(es).
e:E

3. Express the following properties using the modal p-calculus.

(a)
(b)
()

(d)

()

There is a deadlock.
It is possible to do an a action infinitely often, directly from the initial state.

Whenever an action a happens, an action b must always be possible as long as the
action b has not happened.

The Stella is a solar car built by a group of students at this university, which was
considered the best car in the cruiser class during a cross country race through
Australia that took place in the fall of 2013. The software in the Stella has been
designed using mCRL2. One of the properties that the software has is that when-
ever a component (battery, engine, solar-panel) reports a problem, using a report
action, this problem will always be forwarded to the support vehicle that followed
the Stella using a forward action. Give a modal formula for this property.

You are requested to check whether the control software of an automatic pizza
baking machine works well. For this purpose you want to check that the control
software will never attempt to output more pizza’s than that enter the machine.
The action to enter a pizza in the machine is enter and the action to output a
pizza is out. Write the modal formula that expresses this.



4. Consider the following pairs of modal formulas Give a labelled transition system only
containing actions a and b for which the first formula is true and the second is not.
Reversely, provide a labelled transition system for which the first formula is false and
the second is true. If no such transitions systems exist, clearly indicate why, using the
laws for modal logical formulas included in this exam.

(a) [b*](a A b)true and pX.([b]X A (a V b)true).
(b) [b*](uX.[true]X A (a)true) and vY.{a)true A [b]Y .

5. Consider a process X = a-a-X and Y = a-Y-b. Prove using RSP that X =Y.
6. Consider the process equations X = a-(b-X +Y) and Y =a-(X +Y).

(a) Give a linear process of which the behaviour is strongly bisimilar to that of X.

(b) Is 7441 (X) 7-confluent? Is 74, (X) 7-convergent? Draw a state space of 7(4)(X)
after applying 7-priorisation to its maximal extent. Does this reduction preserve
branching bisimulation? Explain all your answers; a simple yes or no does not
suffice.

7. END

Score: (104 n)/10 where n is the cumulative judgement given by the following table:

question | (a) (b) (¢) (d) (e)
1 6 4 4 8
2 10
3 4 4 4 4 4
4 7 7
) 10
6 7 7




MA1l  «a|f = fla
MA2  (alB)ly = al(B])
MA3  alr=a
MD1 r\a=r7
MD2 a\T=a«
MD3 o\ (Bly) = (a\ )\ v
MD4  (a(d)|a) \ a(d) = «
MD5 (a(d)|a) \ b(e) = a(d)|(a\b(e)) ifaZEbordze
MS1 T C a = true
MS2 a(d) C 7 = false
MS3 ald)laCald)|f=alC
MS4 a(d)la T b(e)|f =al(d)|(a\ble)) EL ifaZbordse
MAN1 7=
MAN2  a(d) =a
MAN3 ol =q|B
Table 1: Axioms for multi-actions
Al r+y=y+z
A2 v+ y+z)=(@+y) +=
A3 r+r=u
A4 (r+y)z=xz+yz
Ab (zy)-z = 2(y-2)
A6 r+d==x
AT 0-x =9
Cond1 true—zr oy =x

SUM1
SUMS3
SUM4
SUMS5

Cond2 false—zoy =1y

THEN " c—=2 = c—=x0d

YupT ==

S X(d) = X(¢) + Sy p X ()

2oap(X(d) +Y(d) =>4 p X(d)+ > 0p Y(d)
(Zd:D X(d))y= Zd:D X(d)y

Table 2: Axioms for the basic operators




M rlly=z|lyt+yle+aly

LMDPH afz=azx

LM2X o||xz=9¢

LM3X az|y=ca(zr|y)

LM4 x4y llz=z|z+yl =

LM5 (ap X(d) Ly =>0p X(d) Ly

S1 xly = ylz

S2 (zly)|z = z|(y|2)

S3 x|t =

S4 ald =0

S5 (a-2)|B = alf-z

S6 (cwx)|[(B-y) = a|f-(z || y)

S7 (x4+y)|lz ==x|z +y|z

S8 ( d:D X(d ))|y_2d;DX(d)|y

TCL  (zy)llz== (v =2)
TC2 x| d=umzd

TC3  (z|y) |z ==z|(y | 2)

Table 3: Axioms for the parallel composition operators

C1
C2
C3

I'o(a) =vc(a) C4 To(zy)=Tc(z)lo(y)
Lc(6) =46 C5 To(DgpX(d)=>4plc(X(d)
I'o(x+y) =Tc(x) +Ta(y)

Table 4: Axioms for the communication operator

V1
V2
V3

TV1

Vv(a) =a if acVU{r} V4 Vy(z+y)
Vy(a) =0 if agVU{r} V5 Vy(zy)=
Vy(d) =0 V6 Vy(Xap X(d) =X gp Vv(X(d))

Vv(Vw(2)) = Vvaw (z)

Table 5: Axioms for the allow operator




E1l 83(7') =T E6 83(x+y 283(.%')4-83(3/)
E2  9Op(a(d)) = a(d) ifag B E7 0p(zy)=0p(x)0p(y)
E3  0p(a(d)) =9 ifae B E8 0p(d_ypX(d)=>4p0s(X(d))
E4  9p(a|B) = 9p(a)|0B(B) E5 0p(6) =10
E10 aH(aH/(SC ) = 6HuH/(x)
Table 6: Axioms for the blocking operator

Rl pgr(r)=r7

R2  pgr(a(d)) = b(d) if a—b € R for some b

R3  pgr(a(d)) = a(d if a—b ¢ R for all b

R4 pr(a|B) = pr(a)lpr(B)

R5 ppr(d) =0

R6  pr(z +y) = pr(z) + pr(Y)

R7  pr(zy) = pr(x)pr(Y)

R8  pr(X 4.p X(d)) = 2 a.p pR(X(d))

Table 7: Axioms for the renaming operator

H1  7(r) =7 H6 77(x+y) = 11(x) + 71(y)
H2  77(a(d) =7 ifacl HT 71(zy)="71(2)71(y)
H3  7r(a(d)) = a(d) ifagl H8 773 4pX(d) =2 4p71(X(d))
H4  77(a|B) = m1(@)|m1(B) H5 77(0) =96
H10  77(mp(x)) = 101 ()

Table 8: Axioms for the hiding operator

WK TT =2
BRANCHE z-(r-(y+2) +y) = z-(y + 2)

Table 9: Axioms for 7, valid in rooted branching bisimulation for untimed processes




Failures equivalence

Trace equivalence
Language equivalence

Weak trace equivalence

FDX
F2r
RDIS
Langl
RDIS
RDIS
WT
W

a-(b-z+u) + a-(b-y+v) = a-(b-z+b-y+u) + a-(b-x+b-y—+v)
ar+a(y+z)=azx+a(z+y)+a(y+2)
r(y+z2)=xy+az

z0=19

r(y+z2)=xy+az

r(y+z)=zy+az

TX =

T =

Table 10: Axioms for some other equivalences for untimed processes




Proposition logic

GNP =N
(AY)AX =N (P AX)
GNP=¢

—true = false

¢ N true = ¢

o A false = false

PN VX)=(dAY)V
“(pAY) ==V
g = ¢
p=P="9VY

(¢ A x)

Predicate logic

Vd:D.¢p = ¢

—Vd:D.®(d) = 3d:D.~P(d)
Vd:D.(®(d)AV(d)) = Vd:D.®(d)AVd:D.¥(d)
Vd:D.(®(d)Vy) =Vd:D.®(d) V ¢
Vd:D.®(d) = P(e)

Action formulas

true = false
apUag =1 Nag
3d:D.A(d) = Vd:D.A(d)

Hennessy-Milner logic
—(a)¢ = la]=¢

(a)false = false

(@) (¢ V) =(a)pV(a)y
(a)p A lalp = (a)(p N 1p)

PVY =19V
(V) Vx =0V (¥ Vx)
PVP=9

—false = true

¢V true = true

oV false = ¢

oV (WP AX)=(dV)A
(VYY) =—d A
o= ="9Vy
pev=90=>¢YNp=¢

(o Vx)

3d:D.¢ = 6
—3d:D.®(d) = Vd:D.—~®(d)
3d:D.((d)V¥(d)) = 3d:D.®(d)Vv3d:D.W(d)

W
3d:D.(®(d)Av) = 3d:D.B(d) A
®(e) = 3d:D.D(d)

false = true
ay Nag =ap Uag
Vd:D.A(d) = 3d:D.A(d)

~la]¢ = (a)=¢

[a]true = true
[a](qﬁM/J) [a]¢ A [al
[al(¢ V) = (@) V [aly

Table 11: Equivalences between modal formulas (part I)




Fixed point equations

uX.p(X) = vX.0(X)
pX.0=¢

uX.X = false

uX.(R)X = false

uX.p(X) =vX.—¢p(—X)
pX.0(X) = o(pX.¢(X))

if ¢(1p) = 1 then pX.¢p(X) = ¢

Regular formulas
(e)o
<false><;5 false
(af 1 Uafq)¢g = (af )9V (af 3)¢
(af 1N af9)d = (af1)9 A (af 2)¢
(3d:D.AF(d))¢ = 3d:D.(AF(d))$
(Vd:D.AF(d))¢ = Vd:D.(AF(d))¢
(Ri+ R2)¢ = (R1)9 V (R2)¢
(Ri-R2)¢ = (R1)(R2)¢

(R¥)¢ = pX.((R)X V ¢)

(RT)¢ = (R)(R*)¢

~(R)¢ = [R]-¢

[R]true = true

(R) (o V) = (R)p V (R)Y

(R)o N [R]Y = (R)($ A o)

vX.b =

vX.X = true

vX.[R|X = true

U X.(X) = pX.=p(=X)
VX.6(X) = p(uX.0(X))

if v = ¢(v) then ¥ = v X.¢(X)

[e]o
[false]
af 1 U af )¢

= true

[ J¢ = laf1]o A [af 5]

laf1 N afy]d <= [af1]oV [afo]o
[3d:D.AF(d)|¢ = Vd:D.[AF(d)]¢
Vd:D.AF(d)]¢ < 3d:D.[AF (d)]¢
[R1 + Ro]¢ = [R1]o A [Ro]¢
[R1-Ro]¢ = [R1][Ra]p

[R*]¢ = vX.([R]X A )

[R*)¢ = [R][R*]$

—[R]¢ = (R)~¢
(R)false = false
[R](¢ Aop) = [R]o A [R]Y
[Rl(¢ V) = (R)o V [R]Y

Table 12: Equivalences between modal formulas (part IT)




