Modelling Concurrent Systems:
Protocol Verification in yCRL

Wan Fokkink & Jan Friso Groote
Department of Software Engineering, CWI, Amsterdam
Email: wan@cwi.nl, jfg@cwi.nl

Michel Reniers
Technical Applications, Computing Science Department
Eindhoven University of Technology, Eindhoven
Email: michelr@win.tue.nl

August 2000

Contents
1 Introduction

2 Abstract data types

2.1 Algebraic specification
2.2 Term rewriting
2.3 Equality functionso 0L
24 Induction

3 Process algebra

3.1 Actions
3.2 Alternative and sequential composition
3.3 Parallel processes
3.4 Deadlock and encapsulation
3.5 Process declarations
3.6 Conditionals. 0oL,
3.7 Summation over a datatype.
3.8 Anexample: thebag
3.9 Bisimulation equivalence

4 Abstraction from internal behaviour

4.1 Internal actions and hiding
4.2 Overview
4.3 An example: two buffers in sequence
44 Renaming
4.5 Branching bisimulation equivalence

5 Protocol specifications

5.1 Alternating bit protocol
5.2 Bounded retransmission protocol
5.3 Sliding window protocol
5.4 Tree identify protocol

6 Verification techniques

6.1 Linear process equations

CONTENTS

CONTENTS

6.2 CL-RSP . . . s
6.3 Invariants e e e e e e e e e e
6.4 Conesand foci e e e e e e

7 Verification of the tree identify protocol

8 Graph algorithms

8.1 Minimisation modulo branching bisimulation
8.2 Confluence
8.3 Model checking

Solutions to the exercises

References

68

71
72
74
7

80

89

4 1 INTRODUCTION

1 Introduction

A distributed system is driven by separate components that are being executed in parallel.
In today’s world of wireless and mobile networking, protocols for distributed systems form
a major aspect of system design. Verifying the correctness of such protocols is usually a
formidable task, as even simple behaviours become wildly complicated when they are executed
in parallel. In order to study distributed systems in detail, it is imperative that they are
dissected into their concurrent components.

Process algebra focuses on the specification and manipulation of process terms as induced
by a collection of operator symbols. Process algebras such as CCS [18, 57, 59], CSP [47,
48, 66] and ACP [9, 3, 29] have proven to be nice basic languages for the description of
elementary parallel systems and they are well equipped for the study of behavioural properties
of distributed systems. Fundamental to process algebra is a parallel operator, to break down
systems into their concurrent components. Most process algebras contain basic operators to
build finite processes, communication operators to express concurrency, and some notion of
recursion to capture infinite behaviour. Moreover, a special hiding operator allows one to
abstract away from internal computations. In process algebras, each operator in the language
is given meaning through a characterising set of equations called axioms. If two process terms
can be equated by means of the axioms, then they constitute equivalent processes. Thus the
axioms form an elementary basis for equational reasoning about processes.

System behaviour generally consists of a mix of processes and data. Processes are the
control mechanisms for the manipulation of data. While processes are dynamic and active,
data are static and passive. In algebraic specification, each data type is defined by declaring
a collection of function symbols, from which one can build data terms, together with a set
of axioms, saying which data terms are equal. Algebraic specification allows one to give
relatively simple and precise definitions of abstract data types. A major advantage of this
approach is that it is easily explained and formally defined, and that it constitutes a uniform
framework for defining general data types. Moreover, all properties of a data type must be
explicitly denoted, and henceforth it is clear which assumptions can be used when proving
properties about data or processes. Term rewriting [2] provides a straightforward method
for implementing algebraic specifications of abstract data types. Concluding, as long as
one is interested in clear and precise specifications, and not in optimised implementations,
algebraic specification is the best available method. However, one should be aware that it
does not allow one to use high-level constructs for compact specification of complex data
types, nor optimisations supporting fast computation (such as decimal representations of
natural numbers).

Process algebras tend to lack the ability to handle data. In case data becomes part of a
process theory, one often has to resort to infinite sets of axioms where variables are indexed
with data values. In order to make data a first class citizen in the study of processes, the
language micro CRL[41] has been developed,! denoted uCRL (or mCRL, if Greek letters are

!This language started off as a restricted variant of the so-called Common Representation Language (CRL),
which was developed within the research project SPECS, funded by the European Community. CRL was
intended to serve as a platform to which a family of specification languages could be translated.

unavailable). Basically, uCRL is based on the process algebra ACP, extended with equational
abstract data types. In order to intertwine processes with data, actions and recursion variables
can be parameterised with data types. Moreover, a conditional (if-then-else construct) can
be used to have data elements influence the course of a process, and alternative quantification
is added to sum over possibly infinite data domains.

Despite its lack of ‘advanced features’, yCRL has shown to be remarkably apt for the
description of large distributed systems. It has been the basis for the development of a proof
theory [40], based in part on the axiomatic semantics of the process algebra ACP and of some
basic algebraic data types. This proof theory in combination with proof methods that were
developed in [12, 43] has enabled the verification of large distributed systems in a precise and
logical way (allowing the proof to be checked by proof checkers), which is slowly turning into
a routine. After having mastered the skill of process verification, one will experience that
virtually any protocol for a distributed system that has not been proven correct contains
flaws of a more or less serious nature. And you will hopefully agree that yCRL and its tool
support are well-suited to help detect these problems.

In uCRL we strive for extreme precision in proofs. Therefore, an important research area
is to use theorem provers such as PVS [60], HOL [33], Isabelle [63] and Nqthm [15] to help in
finding and checking derivations in yCRL. A large number of distributed systems have been
verified in pCRL [13, 14, 31, 35, 51, 52, 67, 72|, often with the help of a proof checker or
theorem prover [11, 38, 53]. See [37] for an overview of such case studies. Typically, these
verifications lead to the detection of a number of mistakes in the specification of the system
under scrutiny, and the support of proof checkers helps to detect flaws in the correctness
proof or even in the statement of correctness.

To each pCRL specification there belongs a directed graph, in which the states are process

. . . diyen odn
terms, and the edges are labelled with actions. In this process graph, an edge ¢ al i) t’

means that process term ¢ can perform action a, parametrised with data elements dq, ... ,d,,
to evolve into process term t'. If the process graph belonging to a uCRL specification is
finite, then the yCRL tool set in combination with the CADP tool set [30] can generate and
visualise this graph. While the process algebraic proofs that were discussed earlier can cope
with unspecified data types, the generation of a process graph belonging to a distributed
system requires that all data domains are fully specified. This means that each unspecified
data type (typically, the set of objects that can be received by the distributed system from
the ‘outside world’) has to be instantiated with an ad hoc finite collection of elements.

A severe complication in the generation of process graphs is that in real life, a finite-state
distributed system typically contains in the order of 2'%° states or more. In that sense a uCRL
specification is like Pandora’s box; as soon as it is opened the state space may explode. This
means that generating, storing and analysing a process graph becomes problematic, to say
the least. The following methods have been developed to help tackle large process graphs.
On-the-fly analysis of process graphs allows one to generate only part of a process graph.
Scenario-based verification [25] takes as starting point a certain scenario of inputs from the
outside world, to restrict the behavioural possibilities of a distributed system. Often a uCRL
specification can be manipulated in such a way that the resulting process graph becomes
significantly smaller; see [73]. The ATerm library [16] allows one to store process graphs

6 2 ABSTRACT DATA TYPES

in an efficient way by maximal sharing, meaning that if two states (i.e., two process terms)
contain the same subterm, then this subterm is shared in the memory space. The SVC
file format [36] targets optimal representation of process graphs using standard compression
techniques, typically reducing a process graph to about 2% of its original size. Model checking
[21] provides a framework to efficiently prove interesting properties of large process graphs.
Finally, algorithms have been developed to reduce process graphs after abstracting away from
internal computation steps.

This text is set up as follows. Section 2 gives an introduction into the algebraic specification
of abstract data types. Section 3 provides an overview of process algebra, and explains the
basics of the specification language yCRL. In Section 4 it is explained how one can abstract
away from the internal computation steps of a process. Section 5 contains a number of
uwCRL specifications of protocols from the literature, together with extensive explanations
to guide the reader through these specifications. In Section 6 a number of standard process
algebraic techniques are described that can be used in the verification of 4CRL specifications.
In Section 7 the techniques of the previous section are applied the verify the tree identify
protocol. Section 8 describes some algorithms to eliminate internal computation steps from
a process graph, and explains the basics of model checking. The reader is referred to the
manual of yCRL [73] for more detailed information on yCRL and its tool set.

2 Abstract data types

In this chapter we give an introduction to the algebraic specification of abstract data types
by means of a set of equations. See [8, 55] for lucid overviews of this field.

2.1 Algebraic specification
We start with an example.

Example 2.1 As a standard example we specify the natural numbers with addition and
multiplication. The signature consists of the function 0 of arity zero, the unary successor
function S, and the binary functions addition plus and multiplication mul. The equality
relation on terms is specified by four azioms:

1. plus(z,0) = «z

2. plus(z,S(y)) = S(plus(z,y))

3. mul(z,0) = 0

4. mul(z,S(y)) = plus(mul(z,y),x)

The initial model of this axiomatisation consists of the distinct classes

[0], [S(O)], [$*(O)], [S*(O)], - -

The first three classes, with some typical representatives of each of these classes, are depicted
in Figure 1.

2.1 Algebraic specification 7

0
mul (0, .5(0))
plus(0,0)
plus(mul(S(0),0),0)
plus(0, plus(0,0))
mul(plus(S(0),0),0)
mul(S(S(0)),0)
mul(S(0),0)

Figure 1: Initial model for the natural numbers

For example, the equation plus(S(S(S(0))),S(0)) = mul(S(S(0)),S(S(0))) (ie., 3+1 =
2-2) can be derived from the axiomatisation of the natural numbers as follows.

plus(S(5(5(0))), 5(0)) = S(plus(S(5(5(0))),0)) = S(5(5(5(0))))

and
mul(S(5(0)), S(5(0))) = plus(mul(S(S(0)), S(0)), S(5(0)))

= plus(plus(mul(5(5(0)),0), 5(5(0))), S(5(0)))
= plus(plus(0,8(5(0))), S(5(0)))
= plus(S(plus(0,5(0))), S(5(0)))
= plus(S(S(plus(0,0))), S(5(0)))
= plus(5(5(0)), S(5(0)))
= S(plus(S(5(0)),5(0)))
= S(S(plus(5(5(0)),0)))
= S(5(58(5(0))))-

In general, an algebraic specification consists of:

1. a signature consisting of function symbols, from which one can build terms;

2. a set of axioms, i.e., equations between terms (possibly containing variables), which
induces an equality relation on terms.

The envisioned equality relation is obtained by applying all possible substitutions to the
axioms, and closing the relation under contexts and equivalence. To be more precise:

e if s =t is an axiom, then o(s) = o(t) holds for all possible substitutions from variables
to terms;

o if s =t holds, then C[s] = C[t] holds for all possible contexts C[];

8 2 ABSTRACT DATA TYPES

e t =t holds for all terms t;
e if s = holds, then t = s holds;

e if s =t and ¢{ = u hold, then s = u holds.

#CRL uses algebraic specification of abstract data types, with an explicit recognition of so-
called constructor function symbols, which intuitively cannot be eliminated from data terms.
For example, in the case of the natural numbers the zero 0 and the successor function S are
constructors, while addition plus and multiplication mul are not constructors. The explicit
recognition of constructor symbols makes it possible to apply induction over such function
symbols.

Each data type is declared using the keyword sort. Each declared sort represents a non-
empty set of data elements. Declaring the sort of the booleans is simply done by:

sort Bool

Elements of a data type are declared by using the keywords func and map. Using func
one can declare constructors with as target sort the data type in question; these constructors
define the structure of the data type. E.g. by

sort Bool
func t,f:— Bool

one declares that t (true) and f (false) are the only elements of sort Bool. We say that t and
f are the constructors of sort Bool.

As booleans are used in the if-then-else construct in the process language, the sort Bool
must be declared in every yCRL specification. Besides the declaration of sort Bool, it is also
obligatory that t and f are declared in every specification. Moreover, it is assumed that t
and f are distinct, and that they are the only two elements in Bool. This is expressed by
the axioms Booll and Bool2 in Table 1. In axiom Bool2 and elsewhere we use a variable b
that can only be instantiated with data terms of sort Bool. If in a specification t and f can
be proven equal, for instance if the specification contains an equation t = f, we say that the
specification is inconsistent and it looses any meaning.

Booll —|(t = f)
Bool2 —(b=t)=b="f

Table 1: Basic axioms for Bool

It is now easy to declare the natural numbers, in the logician’s style, using the constructors
zero 0 and successor S.

2.1 Algebraic specification 9

sort Bool, Nat
func t,f:— Bool
0:— Nat
S : Nat — Nat

This says that each natural number can be written as 0 or the application of a number of
successors to 0.

When declaring a sort D, it is required that this data type is not empty. For example, the
following declaration is invalid.

sort D
func f:D—D

It declares that D is a domain in which all the terms have the form f(f(f(...))), i.e., an
infinite number of applications of f. As terms are finite constructs, such terms do not exist.
Fortunately it is easy to detect such problems, and therefore it is a static semantic constraint
that such empty sorts must not occur (see [41]).

If for a sort D there is no constructor with target sort D, then it is assumed that D may
be arbitrarily large. In particular D may contain elements that cannot be denoted by terms.
This can be extremely useful, for instance when defining a data transfer protocol, that can
transfer data elements from an arbitrary domain D. In such a case it suffices to declare in

uCRL:
sort D

The keyword map is used to declare additional functions for a data type of which the
structure is already given; in other words, in map one declares functions symbols that are
not constructors. For instance, declaring conjunction A on the booleans, or declaring addition
plus on natural numbers can be done by adding the following lines to a specification, where
Nat and Bool have already been declared:

map A : Bool X Bool — Bool
plus : Nat x Nat — Nat

By adding plain equations, of the form term = term, assumptions about the functions can
be added. For the two functions declared above, we could add the equations:

var z:Bool
n, m:Nat
rew zTAt==x
e ANf=A1
plus(n,0) = n
plus(n, S(m)) = S(plus(n,m))

The keyword rew refers to the fact that the equations are applied as rewrite rules from left
to right; see Section 2.2. Note that before each group of equations starting with the keyword
rew one must declare the variables that are used.

10 2 ABSTRACT DATA TYPES

Exercise 2.1 Declare disjunction V, negation —, implication = and bi-implication < on the
booleans, and the monus function — on the naturals (with n — m = 0 if n < m), and provide
equations for these functions.

Exercise 2.2 Give algebraic specifications of ‘greater than or equal’ >, ‘smaller than’ < and
‘greater than’ > on the natural numbers.

Exercise 2.3 Give algebraic specifications of even : Nat — Bool and power : Nat X Nat —
Nat, such that even(n) =t if and only if n is an even number, and power(m,n) equals m".

Exercise 2.4 Define a sort List on an arbitrary non-empty domain D, with as constructors
the empty list [] :— List and in : D x List — List to insert an element of D into a list.
Extend this with non-constructor functions toe : List — D to obtain the element at the end
of a list, untoe : List — List to remove this last element from a list, isempty : List — Bool
to check whether a list is empty and ++ : List x List — List to concatenate two lists.

Note that in Exercise 2.4 the function toe is not well-defined on the empty list, meaning that
toe([]) is not equal to an element of D. Likewise, as the empty list does not contain a last
element, preferably one leaves untoe([]) unspecified, meaning that this term is not equal to an
element of List. This has the advantage that a verification using this algebraic specification
of lists is independent of the fact whether or not it is possible to remove the (non-existent)
last element of an empty list. However, if some process verification does use in an essential
way that one is allowed to remove the last element of the empty list, one could consider
adding the equation untoe([]) = [] to the specification of lists.

The machine-readable syntax of uCRL only allows prefix functions in ASCII characters.
For example, in this machine-readable syntax conjunction could read and(b,b’) (instead of
b Ab'). However, in this text we use them freely infix or even postfix, and not necessarily
restricted to ASCII characters, if we believe that this increases readability. Moreover, we use
common mathematical symbols such as A, which are also not allowed by the syntax of uCRL,
for the same reason.

Functions may be overloaded, as long as every term has a unique sort. This means that
the name of the function together with the sorts of its arguments must be unique. E.g. it is
possible to declare maz : Nat X Nat — Nat and max : Bool X Bool — Bool, but it is not
allowed to declare functions f : Bool — Bool and f : Bool — Nat.

2.2 Term rewriting

A term rewriting system consists of rewrite rules term — term (where the first is not a single
variable and the second term does not contain fresh variables. Intuitively, a rewrite rule is
a directed equation that can only be applied from left to right. An up-to-date overview of
term rewriting can be found in [2]. We give an example.

2.3 Equality functions 11

Example 2.2 As an example of a term rewriting system, we direct the four equations for
natural numbers (see Example 2.1) from left to right:

1. plus(z,0) — =

2. plus(z,S(y)) — S(plus(z,y))

3. mul(z,0) — 0

4. mul(z,S(y)) — plus(mul(z,y),x)

Using this term rewriting system we can reduce the term mul(S(0), S(S(0))) to its normal
form S(S(0)), by the following sequence of rewrite steps. In each rewrite step, the subterm
that is reduced is underlined.

3

£
A
N
A
2
=)
=
=
IS

[V

3

I

=
—~~
W
—~
N
A
=
=
W
—~
N

(442 plus(plus(mul(S(0),0), S(0)), S(0))

Ll e lEle
=
IS

Ideally, each reduction of a term by means of a term rewriting system eventually leads to a
normal form, which is built entirely from constructor symbols, so that it cannot be reduced
any further (termination). Moreover, ideally each term can be reduced to no more than one
normal form (confluence). Assuming an axiomatisation, one can try to derive an equation
s = t by giving a direction to each of the axioms, to obtain a term rewriting system, and
attempting to reduce s and ¢ to the same normal form. If the resulting term rewriting system
is terminating and confluent, then this procedure to try and equate s and ¢ is guaranteed to
return a derivation if s = ¢.

It can be the case that more than one rewrite rule can be applied to a term. In this
case, currently the tool set of uCRL selects the first rewrite rule in the layout of the term
rewriting system. Furthermore, it can be the case that several subterms of a term can
be reduced by applications of rewrite rules. In this case uCRL uses innermost rewriting,
meaning that it selects a subterm as close as possible to the leaves of the parse tree of
the term. The implementation of innermost rewriting usually involves only little run-time
overhead compared to outermost rewriting.

2.3 Equality functions
In yCRL one needs to specify an equality function eq : D x D — Bool, reflecting equality
between terms. That is, eq(d,e) = t if d = e and eq(d,e) = f if d # e, for all d,e:D. For

example, for the booleans one could define an equality function as follows.

rew eq(t,t) =t

12 2 ABSTRACT DATA TYPES

In the case of the natural numbers it is no longer possible to define (in)equality for all separate
elements, as there are infinitely many of them. In this case one can define a function eq using
the fact that S(n) = S(m) if and only if n = m.

var n, m:Nat
rew ¢eq(0,0) =t

Exercise 2.5 Assuming an equality function eq on the data type D, specify an equality
function eq on the data type List of lists over D.

Exercise 2.6 Jan Bergstra observed the following remarkable way to specify for any data
type D an eq function to represent equality. We need an auxiliary if-then-else function called

if .

map eq:D X D — Bool
if : Bool x D x D — D

var d,e:D
rew eq(d,d) =t
if (t,d,e) =d

if (eq(d,e),d,e) = e
Show that these equations imply for all d,e:D that:

eq(d,e) =t & d=e.

We note that the specification of the eq function in Exercise 2.6 has poor term rewriting
properties. For example, the specification of the eq function on Nat above reduces the term
€q(S(0),0) to its desired normal form f, while with respect to the specification in Exercise
2.6 eq(S(0),0) is a normal form.

2.4 Induction

We explain how one can use induction to derive equality between data terms, and also how
one can prove data terms to be non-equal.

The division between constructors and mappings gives us general induction principles. If
there are constructor symbols with target sort D, we may assume that every term of sort
D can be written as the application of a constructor to a number of arguments. So if we
want to prove a property p(d) for all terms d of sort D, we only need to provide proofs

2.4 Induction 13

of p(f(di,...,dy)) for all constructors f : Sy x ---S, — D, where each term d; is of sort
S;. If any of the arguments of f, say argument d;, is of sort D, then as d; is smaller than
f(di,... ,d,) we may assume that p(d;) holds. If we apply this line of argumentation, we
say that we apply induction on D.

Recall that the axiom Bool2 says that if a boolean term b is not equal to t then it must be
equal to f. In other words, there are at most two boolean values. Applying this axiom boils
down to a case distinction, proving a statement for the values t and f, and concluding that the
property must then universally hold. We refer to this style of proof by the phrase ‘induction
on booleans’. Note that the sort Bool is the only sort for which we explicitly describe that
the constructors t and f are different. For other sorts, like Nat, there are no such axioms.

A typical example of induction on booleans is the following proof of bAb = b. By induction
it suffices to prove that this equation holds for the constructors b = t and b = f. In other
words, we must show that t At =t and f Af = f. These are trivial instances of the defining
rewrite rules for A mentioned before.

Exercise 2.7 Prove by induction that z V £ = x and ——z = z for all booleans z.

Suppose we have declared the natural numbers with constructors 0 and S, as in Example
2.1. We can for instance derive by induction that plus(0,n) = n for all natural numbers
n. First we must show that plus(0,0) = 0, considering the case where n = 0. This is a
trivial instance of the first axiom on addition. Second we must show plus(0, S(n')) = S(n'),
assuming that n has the form S(n'). As n' is smaller than n, in this case we may assume
that the property to be proven holds for n/, i.e., plus(0,n') = n/. Then we obtain:

plus(0,S(n')) = S(plus(0,n")) = S(n').

Exercise 2.8 Prove by induction that:

1) fAz =1
2) z=>t=t
3) z=>1f=—x

14 3 PROCESS ALGEBRA

Exercise 2.9 Prove by induction that:

(1) mul(0,n) =

(2) plus(plus(k,£),m) = plus(k, plus (£, m));

(3) mul(k, plus(€,m)) = plus(mul (k, £), mul (k,m));

(4) mul(mul(k,£), m) = mul(k, mul(£,m));

(5) mul(power (m, k), power (m, £)) = power (m, plus(k, £));

Exercise 2.10 Describe the concatenation of a list ¢ from which the last element has been
removed to a list ¢’ into which the last element of ¢ has been inserted. Prove, using your
equations from Exercise 2.4 and induction, that if ¢ is non-empty, then this concatenation is
equal to the concatenation of ¢ and ¢'.

In uCRL it is possible to establish when two data terms are not equal, by assuming that
they are equal, and showing that this implies t = f, contradicting axiom Booll. We give an
example showing that the natural numbers zero and one are not equal.

Example 2.3 Let the natural numbers with a 0 and successor function S be appropriately
declared. In order to show that 0 and S(0) are different, we need a function that relates Nat
to Bool, in order to be able to apply axiom Booll. For this function we choose ‘less than or
equal to’, notation <, defined as follows:

map <: Nat x Nat — Bool

var n, m:Nat

rew 0<n=t
S(n)<0=f

S(n) < 8(m) =

Now assume 0 = S(0). Clearly, 0 < 0 = t. But, using the assumption, we also find
0 <0=S5(0) <0=f1. So, we can prove t = f. Hence, we may conclude 0 # S(0).

Exercise 2.11 Prove, using Exercise 2.4, that the empty list and a nonempty list must
always be different.

3 Process algebra

This chapter presents the basics of the specification language pCRL. Its framework consists
of process algebra, for describing system behaviour, enhanced with abstract data types.

In the uCRL specifications presented in this text we use IWTEX type setting features at
will. Actually, there is a precise syntax for yCRL that prescribes what specifications must
look like in plain text which can be found in the defining document of the language [41].

3.1 Actions 15

That syntax is meant for specifications intended to be processed by a computer, in which
case syntactic objects must be unambiguous for a parser. In this text, however, we try to
optimise readability.

All operators in the language are provided with a characterising set of axioms, following
the process algebraic tradition. Basically, they assist in interpreting the language correctly.
Usually the semantics of the language is given in terms of a data algebra and an operational
semantics, but these are not treated here. The axioms provide an alternative semantics of
the language. Furthermore, the axioms form an elementary basis for equational reasoning
about processes.

3.1 Actions

Actions are abstract representations of events in the real world. For instance, sending the
number 3 can be described by send(3), and boiling food can be described by boil(food), where
3 and food are terms declared by a data type specification. In general, an action consists of
an action name possibly followed by one or more data terms within brackets. Intuitively, an

action a(d,... ,d,) can execute itself, after which it terminates successfully:
a(dy,- .. ,dy)
a(di,. .. ,dy)
\/
The symbol / represents successful termination after the execution of a(di,... ,d,).

In uCRL, actions are declared using the keyword act followed by an action name and the
sorts of the data with which it is parametrised. If an action name a does not carry data
parameters, then a() is abbreviated to a. The set of all action names that are declared in
a uCRL specification is denoted by Act. As an example, below is declared the action name
time-out without parameters, an action a that is parametrised with booleans, and an action
b that is parametrised with pairs of natural numbers and data elements.

act time-out
a:Bool
b:Nat x D

In uCRL the data types of an action name need not be unique. That is, it is allowed to
declare an action name more than once, as long as these declarations all carry different data
types. For example, one could declare an action name a with a sort Nat and with a pair of
sorts D x Bool.

In accordance with process algebras such a CCS, CSP and ACP, actions in uCRL are
considered to be atomic. If an event has a certain positive duration, such as boiling food,
then it is most appropriate to consider the action as the beginning of the event. If the
duration of the event is important, separate actions for the beginning and termination of the
event can be used.

16 3 PROCESS ALGEBRA

3.2 Alternative and sequential composition

Two elementary operators to construct processes are the sequential composition operator,
written p-q¢ and the alternative composition operator, written p + q. The process p-q first
executes p, until p terminates, and then continues with executing ¢q. In other words, the
process graph of p-g is obtained by replacing each successful termination r — v/ in the
process graph of p by r = ¢

It is common to omit the sequential composition operator in process expressions. That is, pg
denotes p-q.

The process p+ g behaves as p or ¢, depending on which of the two processes performs the
first action. In other words, the process graph of p + ¢ is obtained by joining p and ¢ at their
roots:

Exercise 3.1 Specify the process that first executes a(d), and then b(stop,f) or c. Also
specify the process that executes either a(d) followed by b(stop,f), or a(d) followed by c.

Al z+y=y+=x

A2 z+(y+z2)=(z+y) +2
A3 z+z=2x

Ad (z+y)z=zz+y=2

A5 (zy)z =z (y-2)

Table 2: Basic axioms for yCRL

In Table 2 axioms A1-Ab5 are listed, describing the elementary properties of the sequential
and alternative composition operators. In these axioms we use variables z, y and z that can
be instantiated by process terms. The axioms Al, A2 and A3 express that + is commutative,
associative and idempotent, A4 expresses that + is right-distributive, and A5 expresses that
- is associative. As binding convention we assume that the - binds stronger than the +. For
example, a - b+ a - ¢ represents (a-b) + (a - ¢).

3.3 Parallel processes 17

Exercise 3.2 Derive the following three equations from Eppa:

(1) ((a+a)(b+b))(c+c) =a(bc);
(2) (a+a)(bc)+ (ab)(c+c) = (a(b+D))(c+c);
(3) ((a+0b)-c+a-c)d=(b+a)(cd).

We use the shorthand z C y for z + y = y, and write z D y for y C z. This notation is
called summand inclusion. It is possible to divide the proof of an equation into proving two
inclusions, as the following exercise shows.

Exercise 3.3 For all 4CRL processes p and ¢ we have: If p C g and g C p, then p = q.

Note that + is not left-distributive, i.e., in general z-(y + z) # z-y + z-2z. In a setting with
concurrency, left-distributivity of + breaks down. We give an example.

Example 3.1 Consider the two processes below:

read (d) l read(d) read (d)

write; (dmuriteg (d) write1(d) l l writes(d)

vV vV

The first process reads datum d, and then decides whether it writes d on disc 1 or on disc 2.
The second process makes a choice for disc 1 or disc 2 before it reads datum d. Both processes
display the same strings of actions, read(d)-write1(d) and read(d)-writes(d). Still, there is
a crucial distinction between the two processes, which becomes apparent if for instance disc
1 crashes. In this case the first process always saves datum d on disc 2, while the second
process may get into a deadlock (i.e., may get stuck); see Section 3.4 for a formal definition
of such deadlocks.

Exercise 3.4 Prove that the axioms A1-3 are equivalent to axiom A3 together with

A2 (z+y)+z = y+(z+2).

3.3 Parallel processes

The parallel operator can be used to put processes in parallel. The behaviour of p || ¢ is the
arbitrary interleaving of actions of the processes p and ¢, assuming for the moment that there
is no communication between p and g. For example, if there is no communication possible
between the actions a and b, then the process a || b behaves as a-b + b-a.

It is possible to let processes p and ¢ in p || ¢ communicate. This can be done to declare in
a communication section that certain action names can synchronise. In yCRL this is done
as follows:

18 3 PROCESS ALGEBRA

comm a|b=c

This means that if actions a(dy,... ,d,) and b(di,... ,d,) can happen in parallel, they may
synchronise and this communication is denoted by c¢(dy,... ,d,). Two actions can only syn-
chronise if their data parameters are exactly the same. In the communication declaration
above it is required implicitly that the action names a, b and ¢ have been declared with exactly
the same data parameters. Communication between actions is commutative and associative:

alb = bla
(a[b)[c = al(ble)

If a communication between actions is declared as above, then communication is another
possibility for parallel processes. For example, the process a || b now behaves as a-b+ b-a + c.

Example 3.2 Let the communication of two actions from {a,b,c} always result to c. The
process graph of the process term (a-b) || (b-a) is depicted in Figure 2.

(a-b)]|(b-a)

a c b
bl|(b-a) blla (a-b)[|a
b /. b b /. a a/,. a
bla a ba a i b ab b ba
N« A PR B BRI D
a v b v a v v b v o ooa v b
U U
v v v v v v

Figure 2: Process graph of (a-b) || (b-a)

Example 3.2 shows that the parallel composition of two simple processes produces a relatively
large process graph. This partly explains the strength of a theory of communicating processes,
as this theory makes it possible to draw conclusions about the full system by studying its
separate concurrent components.

Axioms that describe the parallel operator are in Table 3. In order to formulate the axioms
two auxiliary operators have been introduced. The left merge || is a binary operator that
behaves exactly as the parallel operator, except that its first action must come from the
left-hand side. The communication merge |is also a binary operator behaving as the parallel
operator, except that the first action must be a synchronisation between its left- and right-
hand side. As binding convention we assume that the ||, | and|bind stronger than the +,
and weaker than .. For example, a-b|| ¢+ a || b-c represents ((a-b) || ¢) + (a || (b-c)).

The core law for the parallel operator is CM1 in Table 3. It says that z || y either z performs
the first step, represented by the summand z | y, or y can do the first step, represented by

3.4 Deadlock and encapsulation 19

CM1 z|y=(zlly+yl=z)+=ly
CM2 a(@ || z=a()f

CM3 a(d)z| y=a(d)(z]| y)

CM4 (xjy)[_Lz:ac_'[Lz+yLLz

CF a(d_')|b(d) = ¢(d) B

CF' a(d)|b(€) = § if d # € or a and b do not communicate
M5 a(d)s|b(@) = (a(d) |H@)-o

CM6 a(c{' |b(€)-z = (a(d) Lb(é'))-:c

CM7 a(d)-z|b(€)-y = (a(d)|b(€))-(z || y)
CM8 (z+y)|lz=z|z+y|z

CM9 z|(y+2z2) =z|ly+z|z

Table 3: Axioms for parallellism in yCRL

y|| x, or the first step of z || y is a communication between z and y, represented by z | y.
All other axioms in Table 3 are designed to eliminate occurrences of the left merge and the
communication merge in favour of the alternative and the sequential composition. In the
axioms, d and € denote lists of data parameters.

Axiom CF' features the special constant J, which does not display any behaviour. This
constant will be explained in the next section. CF’ expresses that a(d)|b(€) does not display
any behaviour if ¢ and b do not communicate or if d does not correspond with €.

Exercise 3.5 Suppose that ¢ and b communicate to b', while a and ¢ communicate to .
Derive the equation a || (b+¢) = (b+¢) || a.

3.4 Deadlock and encapsulation

If two actions are able to communicate, then often we only want these actions to occur in
communication with each other, and not on their own. For example, let the action send(d)
represent sending a datum d into one end of a channel, while read(d) represents receiving
this datum at the other end of the channel. Furthermore, let the communication of these two
actions result in transferring the datum d through the channel by the action comm/(d). For
the outside world, the actions send(d) and read(d) never appear on their own, but only in
communication in the form comm/(d).

In order to enforce communication in such cases, we introduce a special constant ¢ called
deadlock, which does not display any behaviour. Typical properties of § are:

e p+d = p: the choice in an alternative composition is determined by the first actions of
its arguments, and therefore one can never choose for a summand J;

20 3 PROCESS ALGEBRA

e §-p = §: as sequential composition takes its first action from its first argument, é-p
cannot perform any actions.

Note that the deadlock does not carry any data parameters.

Sometimes we want to express that certain actions cannot happen, and must be blocked,
i.e., renamed to §. Generally, this is only done when we want to force this action into a
communication. The unary encapsulation operator 0y (H C Act) is specially designed for
this task. The process dg(p) can execute all actions of p that are not in H. Typically,
Oy (a-b(3)-c) = a-d.

Example 3.3 Suppose a datum 0 or 1 is sent into a channel, which is expressed by the
process term send(0) + send(1). Let this datum be received at the other side of the channel,
which is expressed by the process term read (0) + read (1). The communication of send(d) and
read(d) results to comm(d) for d € {0,1}, while all other communications between actions
result to 6. The behaviour of the channel is described by the process term

a{send(O), send(1), read(0), read(l)}((send(o) + Send(l)) || (read(()) + Tead(l)))

The encapsulation operator enforces that the action send(d) can only occur in communication
with the action read(d), for d € {0, 1}.

A6 r+d==x

AT or =20

DD 9u(6) =94

D1 8u(a(d) = a(d) ifag¢ H
D2 Oy(a(d) =4 ifae H
D3 Ou(z+y) = du(x) + du(y)

D4 Og(z-y) = 0 (x)-0n(y)

CD1 d|z=9

CD2 §|lz=94

CD3 =zl|d=

Table 4: Axioms for deadlock

Table 4 lists the axioms for deadlock and encapsulation.

Exercise 3.6 Suppose action a cannot communicate with itself. Derive the equation (b-a) ||
a= (b a)a.

Exercise 3.7 Let the communication of two actions from {a, b, ¢} always result to c. Derive
Ofa,p} ((a-d) || (b-a)) = c-c. (Cf. Example 3.2).

3.5 Process declarations 21

Exercise 3.8 Use the axioms to equate the process

8{send(O), send(1), read(O),read(l)}((send(o) + Send(l)) H (Tead(O) + read(l)))

from Example 3.3 and comm(0) + comm(1).

Exercise 3.9 Give an example to show that processes du(p || ¢) and 0u(p) || Ou(q) can
display distinct behaviour.

Exercise 3.10 Suppose p+q = § can be derived for certain processes p and q. Derive p = 4.

Beware not to confuse a transition of the form ¢ % § with a transition of the form ¢ % /;
intuitively, the first transition expresses that ¢ gets stuck after the execution of a, while the
second transition expresses that ¢ terminates successfully after the execution of a. A process
p is said to contain a deadlock if there are transitions p = p; 3 -+ %3 p, such that the
process p, cannot perform any actions. In general it is undesirable that a process contains
a deadlock, because it represents that the process gets stuck without producing any output.
Experience learns that non-trivial specifications of system behaviour often contain a deadlock.
For example, the third sliding window protocol in [70] contains a deadlock; see [34, Stelling
7- Tt can, however, be very difficult to detect such a deadlock, even if one has a good insight
into such a protocol.

If one process term contains a deadlock while the other does not, then we do not want these
terms to be equal. Namely, we only want to equate process terms that exhibit equivalent
behaviour. It is for this reason that we have to distinguish terms such as a-b+a-c and a-(b+c).
Namely, as a-6 + a-c contains a deadlock, it must not be equal to the deadlock-free term a-c.
In other words, Ogp)(a-b+ a-c)) must not be equal to Ogpy(a-(b+c)). Clearly this implies that
a-b+ a-c and a-(b + ¢) must not be equal.

Exercise 3.11 Let the communication of b and ¢ result to a, while a and ¢ do not commu-
nicate. Say for each of the following processes whether it contains a deadlock:

(1) Ogpylab+c);
(2) 9gpy(a-(b+c));
(3) Ogp,ep(a-(b+0));
(4) Oy ((a-b) [s
(5) Ogp,cy((ad) || c).

3.5 DProcess declarations

The heart of a pCRL specification is the proc section, where the behaviour of the system is
declared. This section consists of equations of the form

proc X(z1:81,... ,%pi8p) =1

22 3 PROCESS ALGEBRA

Here X is the process name, the x; are variables, not clashing with the name of a function
symbol of arity zero nor with a parameterless process or action name, and the s; are sort
names, expressing that the data parameters x; are of type s;. Moreover, ¢ is a process term
possibly containing occurrences of expressions Y (dy,... ,dy), where Y is a process name
and the d; are data terms that may contain occurrences of the variables zi,... ,z,. In this
rule, process X (z1,... ,%,) is declared to have the same (potential) behaviour as the process
expression t.

The equations in a process declaration are to be considered as equations in the ordinary
mathematical sense. This means that with a declaration such as the one above, an occurrence
of X(e1,...,en) can be replaced by t[z1:=ei,... ,zn:=ey,], or vice versa. The equations are
to be guarded, meaning in some sense that occurrences of expressions Y (dy,... ,d;,) are to
be proceeded by actions. For example, an equation Z = Z + a is considered meaningless, as
it does not determine the entire initial behaviour of the process name Z.

The initial state of the specification is declared in a separate initial declaration init section,
which is of the form

init X(di,...,dy)

X(dy,...,dy,) represents the initial behaviour of the system that is being described. In general,
in 4 CRL specifications the init section is used to instantiate the data parameters of a process
declaration, meaning that the d; are data terms that do not contain variables. The init section
may be omitted, in which case the initial behaviour of the system is left unspecified.

An example of a process declaration is the following clock process, which repeatedly per-
forms the action tick or displays the current time. In this example and also in later examples
we assume the existence of a sort Nat with additional operators which represents the natural
numbers.

act tick

display:Nat
proc Clock(n:Nat) = tick-Clock(S(n)) + display(n)- Clock(n)
init Clock(0)

Exercise 3.12 Derive Oyy;cx) (Clock(0)) = display(0)-Oy4icry (Clock (0)).

3.6 Conditionals

The process expression pq where p and ¢ are processes, and b is a data term of sort Bool,
behaves as p if b is equal to t (true) and behaves as ¢ if b is equal to f (false). This operator
is called the conditional operator, and operates as an then_if _else construct. This operator
binds stronger than + and weaker than -.

Using the conditional operator, data can influence process behaviour. For instance, a
counter that counts the number of a actions that occur, issuing a ¢ action and resetting the
internal counter after ten a’s, can be described by (we omit declaring the data types):

3.7 Summation over a data type 23

act a,c
proc Counter(n:Nat) = a-Counter(S(n)) <n < 10 > ¢- Counter(0)
init Counter(0)

The conditional operator is characterised by axioms C1 and C2 in Table 5. There are no
further axioms needed, because all essential properties of conditionals are provable using
axioms Booll and Bool2.

Cl z«atry=2=x
C2 z«fvpy=y

Table 5: Axioms for conditionals

Exercise 3.13 Specify a process that adds the elements of a list of natural numbers and
prints the final result.

Exercise 3.14 Derive the following three equations:

(1) zab>ry=zab>d+y<a—bpd;
(2) zaby Vbepd=xab >+ z by > 6;

) if(b=t=xz=y) thenzabrz=yab> 2.

3.7 Summation over a data type

From now on process terms are considered modulo associativity of the 4, meaning that we do
not care to write brackets for terms of the form p; + po + p3. The sum operator), ,, X(d),
with X (d) a mapping from the data type D to processes, behaves as X (d;) + X(dg) + -+,
i.e., as the possibly infinite choice between X (d) for any data term d taken from D. This
operator is generally used to describe a process that is reading some input over a data type.
E.g. in the following example we describe a single-place buffer, repeatedly reading a natural
number n using action name r, and then delivering that value via action name s.

proc Buffer =3, ... r(n)-s(n)-Buffer

Exercise 3.15 Specify a stack and a queue process. A stack (resp. queue) process is similar
to the buffer above, but can read an unbounded number of elements of some sort D via action
name 7 and deliver them in the reverse (resp. same) order via action name s.

In Table 6 axioms for the sum operator are listed. The sum operator), X(d) is a
conceptually difficult operator, because it acts as a binder, just like the A in the A-calculus
[6]. As before the variable z in the axioms may be instantiated with processes, while the

24 3 PROCESS ALGEBRA

SUM1 > ,pr==x

SUM3 > 4p X(d) =3 4.p X(d) + X(do) (do € D)
SUM4 >, p(X(d) +Y(d) =3 0p X(d) + > 4.p Y(d)
SUMS (34.p X(d))z =3 4 p(X(d)=
SUM6 (XapX(@) Lz =>4p(X(d)
SUMT (X gp X(d) |z =24 p(X(d)]
SUMT x| (324p X(d) =X 4plz| X(d
SUMS 8H(Ed:D X(d)) = Ed:D 8H(X(d))

SUM11 (VdoeD X(do) =Y (do)) = Dogq.pX(d) =2 4.pY(d)

Table 6: Axioms for summation

process names X and Y represent functions from some data type to processes. Conforming
the A-calculus, we allow a-conversion (i.e., renaming of bound variables) in the sum operator,
and do not state this explicitly. Hence, we consider the expressions) ;. , X (d) and)., X(e)
as equal.

When substituting a process p for a variable z, then this p does not contain free variables,
so in particular in cannot contain free occurrences of the data parameter d. For example, we
may not substitute the action a(d) for z in the left-hand side of SUM1 in Table 6. So, SUM1
is a concise way of saying that if d does not appear in p, then we may omit the sum operator
from) ., p. SUM3 allows one to split single summand instances from a given sum. For
instance the processes), .y, a(n) and Y .. a(n) + a(2) are obviously the same, as they
allow an a(n) action for every natural number n. This equation is a direct consequence of
SUMS3. SUM4 says that one may distribute the sum operator over an alternative composition,
even if the sum binds a variable. This can be seen by substituting a(d) for X and b(d) for Y.
Then the left-hand side of SUM4 becomes) ;. ,(a(d)+b(d)), and the right-hand side becomes
> ap o(d)+> 4. p b(d). SUMb expresses that a process without variables can be moved outside
the scope of any sum, while SUMG6-8 deal with the interplay of the sum operator with the
left merge, the communication merge and the encapsulation operator. SUM11 expresses that
two sums are equal if all instantiations of their arguments are equal.

We show how we can eliminate a finite sum operator in favour of a finite number of sum
operators. Such results always depend on the fact that a data type is defined using construc-
tors. Therefore, we need to use induction, which makes the proof appear to be quite complex,
due to the use of axioms SUM3 and SUM11. The equation that we want to derive reads:

D r(n)an <2068 =r(0) +r(1) +r(2). (1)
n:Nat

It is assumed that the natural numbers together with the < relation have appropriately been
defined. The result follows in a straightforward fashion using the following lemma that we
prove first.

3.7 Summation over a data type 25

Lemma 3.4 Let S denote the successor function on Nat. For all m:Nat:

Y Xn=X0+) XS(m)

n:Nat m:Nat
Proof. Using Exercise 3.3 we can split the proof into two summand inclusions.

(C) We first prove the following statement by a case distinction on n:

Xn C X0+ Z XS(m). (2)
m:Nat
— (n = 0) Trivial using A3.
— (n=5(n")
X0+ Zm:Nat XS(m) Slg\/l?)
X0+ Zm:Nat XS(m) +XS(TL,) 2
XS(n').

As (2) has been proven for all natural numbers n, application of SUM11, SUM4 and
SUM1 yields

Z XnC X0+ Z XS(m)
n:Nat m:Nat

as had to be shown.
(D) Using SUM3 it immediately follows for all natural numbers m that:
Z Xn D X0+ XS(m).

n:Nat
So SUM11, SUM4 and SUM1 yield:

Y Xn2X0+ > XS(m

n:Nat m:Nat

X

After a-conversion, namely renaming the bound variable m into n, Lemma 3.4 takes the form
> Xn=X0+ > XS(n)
n:Nat n:Nat

Equation (1) can now be derived as follows:

2 n:Nat (1) 4m < 5(S(0)) >
= (r(0) <0 < 5(5(0)) »)+Enwatr(5(n))45(n)SS(S(O))'>5

r()+((()) < 5(5(0)) » r)
(0) (5(0))) (S

(
0 S5(0
0 ((S

—I—5

26 3 PROCESS ALGEBRA

Using the axioms on natural numbers we can prove all identities on data that we have used
in the proof above; see the next exercise.

Exercise 3.16 Derive 0 < S(S(0)) = t, S(0) < S(S(0)) =t and S(S(0)) < S(S(0)) = t.
Moreover, prove S(S(S(n))) < S(S(0)) = f for all natural numbers 7.

Exercise 3.17 Derive

Z rabry=2x+y.
b:Bool

The axiom SUM11 is one of the most tricky laws of yCRL, and it is easily abused. The
universal quantifier in SUM11 expresses that this axiom may only be applied when there are
no assumptions made on d. We show what can go wrong if this requirement is not respected.
We saw in Exercise 3.17 that) .5z <9b>y =2z +y. An easy corollary of this fact is that
D obBoot AP Y =D g y<dbrz. So,as zatpy =2 and y<af>z = z, it is tempting to
conclude on the basis of SUM11 that) .5, ¢ y = z. However, such an application of
SUM11, where the data domain is partitioned and different sums are used for the different
parts of the data domain, is not allowed; the example above shows that it would lead to the
derivation of invalid equations.

Despite this pitfall, we quite often use sequences > ... => ... =) ..., where we trans-
form the process terms at ... using axioms and lemmas. In such cases we carefully check
that the transformation is valid for every variable bound by the sum operator, and we silently
apply SUM11.

An important law is sum elimination. It states that the sum over a data type from which
only one element can be selected can be removed. This lemma occurred for the first time in
[35]. Note that we assume that we have a function eq available, reflecting equality between
terms. That is, eq(d,e) =t if d = e and eq(d,e) =f if d # e, for all d,e:D (see Section 2.3).

Lemma 3.5 (Sum elimination) Let D be a sort and eq : D x D — Bool a function such
that for all d,e:D it holds that eq(d,e) =t if and only if d = e. Then

ZX) <eq(d,e) > 6 = X(e).

Proof. According to Exercise 3.3 it suffices to prove summand inclusion in both directions.

(C) As for each d:D either eq(d,e) =t or —eq(d, e) = t, it follows that:
X(e) = X(e) ceq(d,e) >+ X(e) < —eq(d,e) > 6.

As we did not make any assumptions about d (except that it is of type D), we may
use SUM11 in combination with SUMA4, Exercise 3.14(3) and the assumption eq(d, e) =
t = d = e to derive:

YapX(€) = Yup(X(e) aeq(d,e) >+ X(e) <—eq(d,e) > d)
= YapX(e)deq(d,e)>d+ 3 ,.pX(e)aeq(d,e)>d
Ed:DX(d) <16q(d,6) D5+ZdD () <1—|eq(d,e))
Zd:D X(d) < GQ(da 6)

i

3.8 An example: the bag 27

So using SUM1 we obtain:

ZX) <eq(d,e) >5CZX = X(e).

d:D
(D) By applying SUM3 and the assumption eg(e,e) =t we find:

ZX Y<eq(d,e)>d D X(e)<eq(e,e)>d = X(e).

Exercise 3.18 Show that if there is some e:D such that b(e) = t, then

z=>Y zab(d)>s
d:D

3.8 An example: the bag

We specify a process that can put elements of a data type D into a bag, and subsequently
collect these data elements from the bag in arbitrary order. This example stems from [10].
The action in(d) represents putting datum d into the bag, and the action out(d) represents
collecting the datum d from the bag. All communications between actions result to §. Initially
the bag is empty, so that one can only put a datum into the bag. The process graph in Figure
3 depicts the behaviour of the bag over {0,1}, with the root state placed in the leftmost
uppermost corner.

The bag over a data type D can be specified by the following one-liner, using the merge ||:

act in, out:D
proc Bag = Xy in(d)-(Bag || out(d))

Note that in the case that D is {0,1}, the process Bag represents the bag over {0,1} as
depicted in Figure 3. Namely, Bag can only execute an action in(d) for d € {0,1}. The
subsequent process Bag || out(d) can put elements 0 and 1 in the bag and take them out
again (by means of the parallel component Bag), or it can at any time take the initial element
d out of the bag (by means of the parallel component out(d)).

Exercise 3.19 Give a process declaration of the bag over {d;,dz} that does not include the
three parallel operators.

3.9 Bisimulation equivalence

In the process algebraic framework defined in the previous sections one can distinguish two
levels. On the one hand there are the process terms, which can be manipulated by means of
the axioms. Techniques from equational logic and tools such as proof checkers and theorem

28 3 PROCESS ALGEBRA

n(0) in(0) in(0) in(0)
o [[[
out(0) out (0) out(0) out(0)
out(1) in(1) out(1) in(1) out(1) in(1) out(1) in(1)
in(0) in(0) in(0) in(0)
[[[[
out(0) out(0) out(0) out(0)
out(1) in(1) out(1) in(1) out(1) in(1) out(1) in(1)
in(0) n(0) in(0) in(0)
o [[[
out(0) out(0) out(0) out(0)
out(1) in(1) out(1) in(1) out(1) in(1) out(1) in(1)
in(0) in(0) in(0) in(0)
[[[[
out(0) out(0) out(0) out(0)
out(1) in(1) out(1) in(1) out(1) in(1) out(1) in(1)

Figure 3: Process graph of the bag over {0, 1}

provers can be used in the derivation of equations. On the other hand there are the process
graphs that are attached to these process terms. Several techniques exist to minimise and
analyse such graphs. While on the level of process terms we have defined an equality relation,
we have not yet introduced a way to relate process graphs.

Processes have been studied since the early 60’s, first to settle questions in natural lan-
guages, later on to study the semantics of programming languages. These studies were in
general based on so-called trace equivalence, in which two processes are said to be equivalent
if they can execute exactly the same strings of actions. However, for system behaviour this
equivalence is not always satisfactory, which was shown in Example 3.1. The process graphs
in this example are depicted below.

read (d) l read (d/\"ead (d)

writeq

(d) writes(d) writeq (d) l lwrz’teg(d)
vV vV
Both processes display the same strings of actions, read (d)write;(d) and read (d)writes(d),

so they are trace equivalent. Still, there is a crucial distinction between the two processes,
which becomes apparent if for instance disc 1 crashes. In this case the first process always

3.9 Bisimulation equivalence 29

saves datum d on disc 2, while the second process may get into a deadlock.

Bisimulation equivalence [4, 58, 62] discriminates more processes than trace equivalence.
Namely, if two processes are bisimilar, then not only they can execute exactly the same strings
of actions, but also they have the same branching structure.

Definition 3.6 (Bisimulation) A bisimulation relation B is a binary relation on processes
such that:

-

1

1. if pBg andpag P, thenqag q' with p' B¢';

v
~—

ul
&

2. ifpBgand ¢ - alg q, thenpag p’ with p’' B¢';

1

3. ifpBgandp —> \/ thenqa(—> Vi

4. if pBq and qa@ Vv, thenpa@

~

V-

Two processes p and q are bisimilar, denoted by p < ¢, if there is a bisimulation relation B
such that pBgq.

Bisimulation agrees with the equality relation on process terms in 4yCRL, in the sense that
if two terms can be equated then their graphs are rooted branching bisimulation equivalent.
In particular, similar to the equality relation, bisimulation is an equivalence relation, and if
p < ¢ then C[p] & C|[q] for all contexts C|].

Example 3.7 (a +a)b< ab+a(b+0b).

A bisimulation relation that relates these two basic process terms is defined by (a+a)-b Ba-b+
a-(b+b), bBb, and bBb+ b. This bisimulation relation can be depicted as follows:

(a+a)b---------+ ab+ a-(b+b)
bz~~~ ~- b+b
| \Q
v

Exercise 3.20 Say for each of the following pairs of basic process terms whether they are
bisimilar:

(1) (b+c¢)-a+ba+caandba+ca;
(2) a-(b+c)+ab+a-cand ab+ac

(3) (a+a)-(b-c) + (a-b)(c + ¢) and (a-(b+ b))(c + ¢).

30 4 ABSTRACTION FROM INTERNAL BEHAVIOUR

For each pair of bisimilar terms, give a bisimulation relation that relates them.

Exercise 3.21 Show that the basic process terms read(d)-(write1 (d)+writes(d)) and read (d)-write; (d)+
read (d)-writes(d) are not bisimilar.

Exercise 3.22 Let a' denote a, and let a**! denote a-a® for k > 0. Prove that a¥ ¢ a*t!
for k > 0.

4 Abstraction from internal behaviour

In this section it is explained how one can abstract away from internal steps of a process, so
that only its external, visible steps remain. As an aside we also explain about renaming of
action names, to support the reuse of generic components within a process.

4.1 Internal actions and hiding

If a customer asks a programmer to implement a product, ideally this customer is able to
provide the external behaviour of the desired program. That is, he or she is able to tell what
should be the output of the program for each possible input. The programmer then comes up
with an implementation. The question is, does this implementation really display the desired
external behaviour? To answer this question, we need to abstract away from the internal
computation steps of the program.

Hiding is an important means to analyse communicating systems. It means that certain
actions are made invisible, such that the relationship between the remaining actions becomes
more clear. The hidden action or internal action is denoted 7. It represents an action that
can take place in a system, but that cannot be observed directly. The 7 does not carry any
data parameters. The internal action is meant for analysis purposes, and hardly ever used in
specifications, as it is very uncommon to specify that something unobservable must happen.

Typical identities characterising 7 are a-7-p = a-p, with a an action and p a process term.
It says that it is by observation impossible to tell whether or not internal actions happen
after the a. Sometimes, the presence of internal actions can be observed, due to the context
in which they appear. E.g. a + 7-b # a + b, as the left-hand side can silently execute the T,
after which it only offers a b action, whereas the right-hand side can always do an a. The
difference between the two processes can be observed by insisting in both cases that the a
happens. This is always successful in a + b, but may lead to a deadlock in a + 7-b.

Axioms B1,2 in Table 7 are the characterising laws for the 7. They express that a 7 is
invisible if it does not lose any possible behaviours (cf. Appendix 4.5). The internal action 7
does not communicate with any actions. In order to make actions hidden, the hiding operator
71 (I C Act) is introduced, where I is a set of action names. The process 77(p) behaves as
the process p, except that all actions with action names in I are renamed to 7. This is
characterised by axioms TID and TT1-4.

Exercise 4.1 Derive the following equations from the axioms.

4.2 Overview 31

B1 T ==
B2 z(1-(y + 2) +y) = z-(y + 2)

TID 7'[(5) =4

TI1 TI(G@) = a(d) ifa¢l
TI2 T1(a(d)) =7 ifael
TI3 m(x +y) = 71(x) + 71 (y)

TT4 Tr(zy) = 71(x) 71 (y)

SUMY 71(34.p X(d)) = 22 4.p 1(X(d))

Table 7: Axioms for internal actions and hiding
a(th+b) = ab;

)

2) a(r(b+c¢c)+b) =a(r(b+c) + c);
) T{a}(a(a(b +c)+b) = T{d}(d(d(b +c¢)+c)).
)

Prove that if y C z then 7(7z + y) = 7.

4.2 Overview

So far we have presented a standard framework for the specification and manipulation of
concurrent processes. Summarising, it consists of basic operators (Act, +,) to define finite
processes, communication operators (||, ||,) to express parallelism, deadlock and encap-
sulation to force actions into communication, 7 and hiding to make internal computations
invisible, and process declarations to express recursion.

In particular, the framework is suitable for the specification and verification of network
protocols. For such a verification, the desired external behaviour of the protocol is represented
in the form of a process term that is built from process declarations involving only the basic
operators. Moreover, the implementation of the protocol is represented in the form of a
process declaration that involves the basic operators and the three parallel operators. Next,
the internal send and read actions of the implementation are forced into communication using
an encapsulation operator, and the internal communication actions are made invisible using
a hiding operator, so that only the input/output relation of the implementation remains.
Finally, the two process terms representing the specification and the implementation are
equated by means of the axioms.

4.3 An example: two buffers in sequence

To give a more extensive example of the use of the framework described in the previous
sections, we consider two buffers of capacity one that are put in sequence: buffer B; reads

32 4 ABSTRACTION FROM INTERNAL BEHAVIOUR

a datum from a channel 1 and sends this datum into channel 3, while buffer By reads a
datum from a channel 3 and sends this datum into channel 2. This system can be depicted
as follows:

Action r;(d) represents reading datum d from channel ¢, while action s;(d) represents send-
ing datum d into channel i. B; and By are defined by process declaration

act Tl,?"Q,T?,,Sl,SQ,S?,:D
proc Bl = Ed:D T‘1(d)-83(d)-Bl
By =} 4.p3(d)s2(d)-B>

Action c3(d) denotes communication of datum d through channel 3. Similar as in Example
3.3, s3(d) | r3(d) = c3(d), while all other communications between actions result to §. The
system initially consists of buffers By and B in sequence, which is described by the process
declaration

init (e, (a)/de D} (Ofs3(d),rs(a)\ae D} (B2 || B1))

The encapsulation operator enforces send and read actions over channel 3 into communication,
while the hiding operator makes internal communication actions over channel 3 invisible.

The two buffers B; and Bs of capacity one in sequence behave as a queue of capacity two,
which can read two data elements from channel 1 before sending them in the same order into
channel 2. The queue of capacity two over D is described by the process declaration

proc X =5, ,ri(d)Y(d)
Y(d:D) =Y yepri(d)-Z(d,d) + sy(d)-X
Z(d:D,d":D) = s5(d)-Y (d)

In state X, the queue of capacity two is empty, so that it can only read a datum d from
channel 1 and proceed to the state Y (d) where the queue contains d. In Y (d), the queue can
either read a second datum d' from channel 1 and proceed to the state Z(d,d’) where the
queue contains d and d’, or send datum d into channel 2 and proceed to the state X where
the queue is empty. Finally, in state Z(d,d’) the queue is full, so that it can only send datum
d into channel 2 and proceed to the state Y (d') where it contains d'.

Exercise 4.2 Give a uCRL specification of the two buffers of capacity one in sequence
together with their data types. Use the uCRL tool set to analyse this specification

We show algebraically that 7(.,}(0ys,r,) (B2 || B1)) behaves as a queue of capacity two.
In order to simplify the presentation, we assume that the data set D consists of the single

4.3 An example: two buffers in sequence 33

element 0, and atomic actions are abbreviated by omitting the suffix (0). First we expand
Ofs3,r53(B2 || B1); in each derivation step, the subterms that are reduced are underlined.
Since actions r3 and r; do not communicate, the axioms of ACP together with the process
declarations yield:

By || B
= By Bi+Bil B+ By By
= (r3-s9-Ba) || B1 + (r1-83-B1) || B2 + (r3-s2-B2) | (r1-s3-B1)
LM o ((s2-By) || By) + r1+((s3-By) || Ba) + ((82'32) | (s3-B1))
2 ry((s2°B2) || By) +r1((s3-B) || Ba) +
2 ry((s2Ba) | Br) +r1((s3By) || Ba).

So the axioms for deadlock and encapsulation yield:

a{53 r3} B2 || Bl)
= Ofsy,rs}(r3-((s2:B2) || B1) +r1-((s3-B1) || B2))

(
(

= Ofss,ra}(13°((82:B2) || B1)) + Ofsy,r53(r1-((83-B1) || B2))
(

D3

D4

= Otsirs} (13) Otsg,rs) (52-B2) || B1) + Opsyrs) (1) Ofsg s} (53-B1) || Ba)
D1,2

= 6'8{53,7"3}((32'32) | B1) +T1'8{S3,73}((S3'B1) I B2)

& 54710055 73 ((s53°B1) || Bo)

T71:0fs3,r5} ((83-B1) || B2).
Summarising, we have derived
Oss,ra} (B2 || B1) = 71:044 75} ((53-B1) || Ba). (3)

We proceed to expand Oy, ,}((s3B1) || Bz). As above, it can be derived from the axioms of
ACP together with the process declarations that

(s3:B1) || B2 = s3+(B1 || B2) +r3-((s2:B2) || (s3-B1)) + c3:(B1 || (s2:B2)).

Using the equation above, it can be derived from the axioms for deadlock and encapsulation
that

Ofs3,r3}((83°B1) || B2) = ¢3-045,,05}(B1 || (52-B2))- (4)

We proceed to expand 9y, ,,1(B1 || (s2B2)). By the axioms of ACP together with the process
declarations,

By || (s2:B2) = r1-((s3-B1) || (s2-B2)) + s2-(B2 || B1).

So by the axioms for encapsulation,

6{83,r3}(31 || (s2:B2))
= 7105575} ((83°B1) || (82:B2)) + 82:0y4, 143 (B2 || B1)- (5)

34 4 ABSTRACTION FROM INTERNAL BEHAVIOUR

We proceed to expand 9y, ;3 ((s3-B1) || (s2:B2)). By the axioms of ACP together with the
process declarations,

(s3-B1) || (s2-Ba) = s3:(Bi || (s2-B2)) + s2+(Bz || (s3-B1)).
So by the axioms for deadlock and encapsulation,
Otsgume} ((s3-B1) || (s2-B2)) = 82015505} (B2 || (s3-B1))-
Commutativity of the merge yields Bs || (s3:-B1) = (s3-B1) || B2, so
Oyss,rs) ((83-B1) || (s2-B2)) = 820445 r5} ((83-B1) || B2). (6)
Summarising, we have algebraically derived the following relations:
Oyss,r5}(B2||B1)
T1
82 [Ofsg,rs}((83-B1)||B2)
C3
Ofs3,rs} (Bill(s2-B2)) $2
T1

Ofs3,r5}((83°B1)||(s2-B2))

Equations (3) and (4) together with the axioms for 7 and hiding yield:

T{ea} (Ofsg 5} (B2 || B1)) Ties} (T1° 045551 ((83-B1) || B2))
"1 T(eg} (054,75} (s3-B1) || Bz))
T1° T3} (€3°0s5,r5) (B1 || (52-B2)))
= 1T Ty} (Ofsg s} (B || (52-B2)))
= Tl'T{Cs}(a{S:’,,m}(Bl || (s2:B2))).-

Moreover, equation (5) together with the axioms for hiding yield:
s} (Ofsg,r5} (B || (s2:B2)))
T{cs}(Tl'a{ss,T:s}((S?)'Bl) || (82'32)) + 32'8{53,T3}(B2 || Bl))
) 74
= 11 Tea}(Ogsgra} ((s3-B1) || (s52:B2))) + 8273} (Osg,r0} (B2 || B)).
Finally, equations (4) and (6) together with the axioms for 7 and hiding yield:

Tics} (Ofss,rs} ((83-B1) || (s2-B2)))

—
ot
=

T

(=
=
w

—
=)
=

Tiea} (820s3,r3} ((53-B1) || B2))
52°T{e3} (Osa,ra} ((53-B1) || B2))
82°T{c3)(€3:0ys5,r5} (B1 || (52-B2)))
32'7'7{03}(8{53#3}(31 || (s2-Bz)))
52'7{03}(6{83#3}(31 || (s2:B2)))-

=
=
=
=~

—
N
N2

=
=
ul\?
=~

1=

4.4 Renaming 35

The last three derivations together show that

X = 7{03}(6{53,T3}(Bz | B1))
Vo= e} (0fss s} (Bi || (s2:B2)))
Z = T{ca}(a{ss,r3}((33'31) | (s2-B2)))

is a solution for the process declaration of the queue of capacity two over {0}:

X = ’l"l-Y
Y = 7‘1-Z + 82‘X
Z = soY.

4.4 Renaming

Sometimes it is efficient to reuse a given specification with different action names. This for
instance allows the definition of generic components that can be used in different configu-
rations. The renaming operator py, with f : Act — Act, is suited for this purpose. The
subscript f signifies that the action ¢ must be renamed to f(a). The process ps(p) behaves
as p with its action names renamed according to f. An equational characterisation of the
renaming operator can be found in Table 8.

Table 8: Axioms for renaming

Exercise 4.3 Use the renaming operator to extract the buffer B, Exercise 4.2 from the
process declaration of Bj.

4.5 Branching bisimulation equivalence

While on the level of process terms with internal actions we have defined an equality relation,
we have not yet introduced a way to relate process graphs. In this section we define the notion
of rooted branching bisimulation equivalence on process graphs. This equivalence agrees with
the equality relation on process terms, in the sense that if two terms can be equated then
their graphs are rooted branching bisimulation equivalent. Furthermore, rooted branching
bisimulation equivalence agrees with bisimulation equivalence, if the 7 is taken to be a concrete
visible action.

36 4 ABSTRACTION FROM INTERNAL BEHAVIOUR

As the equality relation on terms is closed under contexts (i.e., p = ¢ implies C[p] = C|q]
for all contexts C[]), we want the equivalence relation on graphs to satisfy this same property.

The intuition for the internal step, that it represents an internal computation in which we
are not really interested, requires that two process graphs may be equivalence even if one
graph can perform a 7 while the other cannot. The question that we must pose ourselves is:

which 7’s are silent?

The obvious answer to this question, “all 7’s are silent”, turns out to be incorrect. Namely,
this answer would produce an equivalence relation that, on the level of terms, is not preserved
under contexts.

As an example of an action 7 that is not silent, consider the process terms a + 7+ and a.
If the 7 in the first term were silent, then these two terms would be equivalent. However, the
process graph of the first term contains a deadlock, a + 7-6 — §, while the process graph of
the second term does not. Hence, the 7 in the first term is not silent. In order to describe
this case more vividly, we give an example.

Example 4.1 Consider a protocol that first receives a datum d via channel 1, and then
communicates this datum via channel 2 or via channel 3. If the datum is communicated
through channel 2, then it is sent into channel 4. If the datum is communicated through
channel 3, then it gets stuck, as the subsequent channel 5 is broken. So the system gets into
a deadlock if the datum d is transferred via channel 3. This deadlock should not disappear
if we abstract away from the internal communication actions via channels 2 and 3, because
this would cover up an important problem of the protocol.

2
1
- =

3 5

X~

Figure 4: Protocol with a malfunctioning channel

The system, which is depicted in Figure 4, is described by the process term

s} (r1(d)-(e2(d)-54(d) + c3(d)-s5(d)))

PIZAS o (d)-(ca(d)-sa(d) + c3(d)-6)

where s;(d), r;(d), and ¢;(d) represent a send, read, and communication action of the datum
d via channel i, respectively. Abstracting away from the internal actions co(d) and c3(d) in
this process term yields 71 (d)-(7-s4(d) + 7-8). The second 7 in this term cannot be deleted,
because then the process would no longer be able to get into a deadlock. Hence, this 7 is not
silent.

4.5 Branching bisimulation equivalence 37

As a further example of a 7-transition that is not silent, consider the process terms a + 7-b
and a+b. We argued previously that the process terms Oy (a+7-b) = a+7- and 9ppy(a+b) =
a are not equivalent, because the first term contains a deadlock while the second term does
not. Hence, a+7-b and a+ b cannot be equivalent, for else the envisioned equivalence relation
would not be a congruence.

Problems with congruence can be avoided by taking a more restrictive view on abstracting
away from internal steps. A correct answer to the question
which T-transitions are silent?
turns out to be

those T-transitions that do not lose possible behaviours !

For example, the process terms a + 7-(a + b) and a + b are equivalent, because the 7 in the
first process term is silent: after execution of this 7 it is still possible to execute a. In general,
process terms s+ 7-(s+t) and s+t are equivalent for all process terms s and ¢. By contrast,
in a process term such as a + 7-b the 7 is not silent, since execution of this 7 means losing
the option to execute a.

The intuition above is formalised in the notion of branching bisimulation equivalence [32].
Let the processes p and ¢ be branching bisimilar. If p = p, then ¢ does not have to simulate
this 7-transition if it is silent, meaning that p’ and ¢ are branching bisimilar. Moreover,

. .. d . . .
a non-silent transition p a(—>) p' need not be simulated by ¢ immediately, but only after a

number of silent 7-transitions: ¢ — --- = qo a(—>) q', where p and gy are branching bisimilar
(to ensure that the 7-transitions are silent) and p’ and ¢' are branching bisimilar (so that

d . d
P a(—;) p' is simulated by qq a(_;) q'). A special termination predicate | is needed in order to

relate branching bisimilar process terms such as a7 and a. These intuitions are formalised in
the following definition.

Definition 4.2 (Branching bisimulation) Assume a special termination predicate |, and
let y/ represent a state with v/ J. A branching bisimulation relation B is a binary relation on
the collection of processes such that:

1. if pBg andpa@ p', then

- either @ = 7 and p' Bg;

- or there is a sequence of (zero or more) 7-transitions ¢ = - - - 55 go such that p B g

and qq a@ q with p' B¢';
2. if pBqg and ¢ a@ q', then

- either a = 7 and p B¢';

- or there is a sequence of (zero or more) 7-transitions p — - -+ - py such that py Bq

d .
and pg a(—D p’ with p' B¢'.

38 4 ABSTRACTION FROM INTERNAL BEHAVIOUR

3. if pBq and p |, then there is a sequence of (zero or more) 7-transitions ¢ — --- — qo
such that ¢g J;

4. if pBq and ¢ |, then there is a sequence of (zero or more) 7-transitions p = -+ — pg
such that pg |.

Two processes p and ¢ are branching bisimilar, denoted by p ¢, g, if there is a branching
bisimulation relation B such that p Bg.

Example 4.3 a+ 7-(a+b) &4 7-(a+ b) + b.

A branching bisimulation relation that relates these two process terms is defined by a+7-(a+
b)Br(a+b)+b,a+bBr(a+b)+ba+7(a+bBa+b, a+bBa+b, and \/B+/. This
relation can be depicted as follows:

a+T1(a+bk--------- 7(a+b)+b
M S //,/ M
a /’\/\\\ a
\/b%bajhb ------ a+b 5 v

It is left to the reader to verify that this relation satisfies the requirements of a branching
bisimulation.

Exercise 4.4 Give branching bisimulation relations to prove that the process terms a, a-7,
and 7-a are branching bisimilar.

Exercise 4.5 Give a branching bisimulation relation to prove that the process terms 7-(7-(a+
b) + b) + a and a + b are branching bisimilar.

Exercise 4.6 Assume a process graph, and let the states s and s’ in this process graph be
on a 7-loop; that is, there exist sequences of 7-transitions s = --- = &' and s’ 5 --- 5 s.

Prove that s and s’ are branching bisimilar.

Groote and Vaandrager [44] presented an algorithm to decide whether two finite-state
processes are branching bisimilar, which has worst-case time complexity O(mn), where n is
the number of states and m the number of transitions in the input graph; see Section 8.1.

Branching bisimilarity is an equivalence relation; see [7]. Branching bisimulation equiva-
lence, however, is not a congruence with respect to BPA. For example, 7-a and a are branching
bisimilar (see Exercise 4.4), but 7-a + b and a + b are not branching bisimilar. Namely, if
7-a + b executes 7 then it loses the option to execute b, so this 7-transition is not silent.

Milner [59] showed that this problem can be overcome by adding a rootedness condition:
initial 7-transitions are never silent. In other words, two processes are considered equivalent
if they can simulate each other’s initial transitions, such that the resulting processes are
branching bisimilar. This leads to the notion of rooted branching bisimulation equivalence,
which is presented below.

4.5 Branching bisimulation equivalence 39

Definition 4.4 (Rooted branching bisimulation) Assume the termination predicate J,
and let 1/ represent a state with \/ |. A rooted branching bisimulation relation B is a binary
relation on processes such that:

1. if pBgand p % p', then ¢ % ¢ with p' & ¢';
2. if pBqgand ¢ = ¢, then p > p' with p’ & ¢';
3. if pBq and p |, then q |;
4. if pBqg and ¢ |, then p |.

Two processes p and q are rooted branching bisimilar, denoted by p <,, g, if there is a rooted
branching bisimulation relation B such that p B gq.

Since branching bisimilarity is an equivalence relation, it is not hard to see that rooted
branching bisimilarity is also an equivalence relation.

Exercise 4.7 Say for the following five pairs of process terms whether or not they are bisim-
ilar, rooted branching bisimilar, or branching bisimilar:

1) (a+b)-(c+d) and a-c+ a-d + b-c + b-d;

2) (a+b)(c+d) and (b+ a)-(d+c) + a-(c+d);

(1)
(2)
(3) (b+a)+7-(a+b) and a + b;
(4) c(r-(b+a)+ 7-(a+ b)) and c-(a + b);
(5) a-(t-b+¢) and a-(b+ 7-¢).

In each case, give explicit relations, or explain why such relations do not exist.

Exercise 4.8 Data elements (of a collection D) can be received by a one-place buffer X via
channel 1. An incoming datum is either sent on via channel 2, or stored in a one-place buffer
B via channel 3.

X and B are defined by the following CRL specification:

act 7"1,82,83,7‘3,63:D
comm sg |‘l“3 =cC3
proc X = Y4 71(d)-(s2(d)-X + s3(d)-Y (d))
Y (d:D) = r3(d)(s2(d)-X + s3(d)-Y (d)) + X gp 71 (d)-52(d)-Y (d)
B = Ed:D Tg(d *S3 d)B

40 5 PROTOCOL SPECIFICATIONS

Let t denote 04(q),s3(d)|dcp} (X[B), and let D consist of {d1,d2}.

e Draw the process graph of t.
o Are data elements read via channel 1 and sent via channel 2 in the same order?

e Does 0; Sz(dl)}(t) contain a deadlock? If yes, then give an execution trace to a deadlock
state.

e Draw the process graph of 7(.,(4,) ¢s(d2)}(t). Distinguish the silent 7-transitions from
the non-silent ones.

Draw the process graph of T(c,(4,),cs(ds)} (t) after minimisation modulo branching bisim-
ulation equivalence.

Exercise 4.9 Data elements (of a collection D) can be received by a one-place buffer X via
channel 1, in which case they are sent on to one-place buffer Y via channel 2. Y either sends
on an incoming datum via channel 2, or it sends back this datum to X via channel 2. In the
latter case, X returns the datum to Y via channel 2.

1 2 3
x]]

X and Y are defined by the following pCRL specification:

act ’1"1,82,’1"2,02,83:D

comimm So | T92 = Co

proc X =3, p(r1(d) +r2(d))-sa(d)-X
V=3 4pr2(d)-(s3(d) + s2(d))-Y

Let ¢ denote O, (q),s5(a)lden} (X||Y), and let D consist of {d1,ds}.

e Draw the process graph of t.
o Are data elements read via channel 1 and sent via channel 3 in the same order?

e Does Oy, (4,)} (t) contain a deadlock? If yes, then give an execution trace to a deadlock
state.

e Draw the process graph of 7(.,(4,),cs(d,)} (t) after minimisation modulo branching bisim-
ulation equivalence.

5 Protocol specifications

Much time and effort is expended in the development of new techniques for the description and
analysis of distributed systems; however, many of these techniques are never widely used, due

5.1 Alternating bit protocol 41

to a sharp learning curve required to adopt them; many verification techniques have complex
theoretical underpinnings, and require sophisticated mathematical skills to apply them. Case
studies therefore have a valuable role to play both in promoting and demonstrating particular
verification techniques, and providing practical examples of their application. In this chapter
we present specifications of a number of protocols in ygCRL. In Chapter 7 we will verify the
correctness of some of these protocols.

5.1 Alternating bit protocol

Suppose two armies have agreed to attack a city at the same time. The two armies reside
on different hills, while the city lies in between these two hills. The only way for the armies
to communicate with each other is by sending messengers through the hostile city. This
communication is inherently unsafe; if a messenger is caught inside the city, then the message
does not reach its destination. The paradox is that in such a situation, the two armies are
never able to be 100% sure that they have agreed on a time to attack the city. Namely,
if one army sends the message that it will attack at say 1lam, then the other army has to
acknowledge reception of this message, army one has to acknowledge the reception of this
acknowledgement, et cetera.

The alternating bit protocol (ABP) [6] ensures successful transmission of data through
a lossy channel (such as messengers through a hostile city). This success is based on the
assumption that data can be resent an unlimited number of times. The protocol is depicted

in Figure 5.
e
A _ D
—| Sender Receiver ——
ST
Figure 5: Alternating bit protocol
Data elements di,ds,ds, ... from a finite set A are communicated between a Sender and

a Receiver. If the Sender reads a datum from channel A, then this datum is communicated
to the Receiver, which sends the datum into channel D. However, the channels between the
Sender and the Receiver are lossy, so that a message that is communicated through these
channels can be turned into an error message | . Therefore, every time the Receiver receives
a message, it sends an acknowledgement to the Sender, which can also be corrupted.

In the ABP, the Sender attaches a bit 0 to data elements dor_1 and a bit 1 to data elements
dor.. As soon as the Receiver reads a datum, it sends back the attached bit, to acknowledge
reception. If the Receiver receives a corrupted message, then it sends the previous acknowl-
edgement to the Sender once more. The Sender keeps on sending a pair (d;,b) as long as it
receives the acknowledgement 1 — b or L. When the Sender receives the acknowledgement
b, it starts sending out the next datum d;,; with attached bit 1 — b, until it receives the

42 5 PROTOCOL SPECIFICATIONS

acknowledgement 1 — b, et cetera. Alternation of the attached bit enables the Receiver to
determine whether a received datum is really new, and alternation of the acknowledgement
enables the Sender to determine whether it acknowledges reception of a datum or of an error
message.

We give a uCRL specification of the ABP. This specification displays the desired external
behaviour; that is, the data elements that are read from channel A by the Sender are sent
into channel D by the Receiver in the same order, and no data elements are lost. In other
words, the process term is a solution for the process declaration

X =) ra(d)-sp(d)X
d:A

where action 74 (d) represents “read datum d from channel A”, and action sp(d) represents
“send datum d into channel D”.

First, we specify the Sender in the state that it is going to send out a datum with the bit
b attached to it, represented by the process name S(b) for b € {0,1}:

S() =) _ra(d)-se(d,b)-T(d,b)
T, = m(b)-SA—b) + (re(d—b)+re(L))-sp(db)T(d,b

In state S(b), the Sender reads a datum d from channel A, and sends this datum into channel
B, with the bit b attached to it. Next, the system proceeds to state T'(d,b), in which it
expects to receive the acknowledgement b through channel F, ensuring that the pair (d,b)
has reached the Receiver unscathed. If the correct acknowledgement b is received, then the
system proceeds to state S(1 —b), in which it is going to send out a datum with the bit 1 —b
attached to it. If the acknowledgement is either the wrong bit 1 — b or the error message L,
then the system sends the pair (d,b) into channel B once more.

Next, we specify the Receiver in the state that it is expecting to receive a datum with the
bit b attached to it, represented by the process name R(b) for b € {0,1}:

R(b) = Zrc(d, b)-sp(d)-sg(b)-R(1—-b) + Q_garc(d,1 —0)+rc(L))-se(l—b)-R(b)
d:A

In state R(b) there are two possibilities.

1. If in R(b) the Receiver reads a pair (d,b) from channel C, then this constitutes new
information, so the datum d is sent into channel D, after which acknowledgement b is
sent to the Sender via channel E. Next, the Receiver proceeds to state R(1 — b), in
which it is expecting to receive a datum with the bit 1 — b attached to it.

2. If in R(b) the Receiver reads a pair (d,1—b) or an error message L from channel C, then
this does not constitute new information. So then the Receiver sends acknowledgement
1 — b to the Sender via channel E and remains in state R(b).

5.2 Bounded retransmission protocol 43

The processes K and L express that messages between the Sender and the Receiver, and vice
versa, may be corrupted.

K = Y Y rs(db)(-sc(db) +j-sc(L)K
d:A b:{0,1}

L= Y rulb)(esed) + jrse(L)L
b:{0,1}

The action j expresses the nondeterministic choice whether or not a message is corrupted.

A send and a read action of the same message ((d,b), b, or L) over the same internal
channel (B or D) communicate with each other:

ss(d,b)|re(d,b) = cB(d,b)
sp(L)|re(L) = (L)
s (b) | (b) = cp(b)
sp(L)|rp(L) = en(d)

for d € A and b € {0,1}. All other communications between atomic actions result to ¢.

The desired concurrent system is obtained by putting S(0), R(0), K and L in parallel,
encapsulating send and read actions over internal channels, and abstracting away from com-
munication actions over these channels and from the action j. That is, the ABP is expressed
by the process term

71(0u (S(0) [R(0) || K[| L))

with H consisting of all send and read actions over B, C, E and F, and I consisting of all
communication actions over B, C, E and F together with j. The process graph of 9y (S(0) |
R(0) || K || L) is depicted in Figure 6.

Exercise 5.1 Give a yCRL specification of the ABP together with its data types. Use the
#CRL tool set to analyse this specification, for A = {d;,dz}.

Exercise 5.2 Suppose that in the ABP the Sender would not attach an alternating bit to
data elements, and that the Receiver would only send one kind of acknowledgement. Show
with the help of the yCRL tool set that in that case data elements could get lost.

5.2 Bounded retransmission protocol

Philips formulated a bounded retransmission protocol (BRP) for the implementation of a
remote control (RC). Data elements that are sent from the RC to their destination, say a
TV, may get lost. For example, the user may point the RC in the wrong direction. Therefore,
if the TV receives a datum, it sends back a message to the RC, to acknowledge reception;
this acknowledgement may also get lost. The RC attaches an alternating bit to each datum
that it sends to the TV, so that the TV can recognise whether it received a datum before.

In general, the data packets that are sent from the RC to the TV are large, so that they
cannot be sent in one go. This means that each data packet is chopped into little pieces, and

44 5 PROTOCOL SPECIFICATIONS

Figure 6: Transition graph of 9y (S(0) || R(0) || K || L).

the RC sends these pieces one by one. The RC attaches a special label to the last element of
a data packet, so that at reception of this datum the TV recognises that this completes the
data packet.

A datum can only be resent a limited number of times. This means that the correctness
criterion cannot be that each datum that is sent by the RC will eventually reach the TV.
Instead, it is required that either the complete data packet is communicated between the
RC and the TV, or the RC sends an appropriate message to the outside world to inform its
corresponding partner that this communication has (or may have) failed.

In the communication between the RC and the TV, data elements may get lost. In order
to ensure that the BRP progresses, we need to incorporate some notion of time. Namely, if
the RC sends a datum to the TV and does not receive an acknowledgement within a certain
period of time, then it is certain that the datum or its acknowledgement was lost, so that
the datum has to be resent. Furthermore, if the TV does not receive a next datum within a
certain period of time, then it can be sure that the RC has given up transmission of a data
packet.

Two timer processes T1 and 75 send time-out messages to the RC and the TV, respectively.
If the RC sends a datum to the TV, then it implicitly sets the timer T7; if the RC receives
an acknowledgement, then it implicitly resets 7. Alternatively, 77 sends a time-out to the
RC, to signal that the acknowledgement has been delayed for too long; in that case, the RC
resends the datum. Likewise, the timer 75 can send a time-out to the TV, to signal that the
next datum has been delayed so long that the RC must have given up transmission of the

5.2 Bounded retransmission protocol 45

data packet.

/B(

Figure 7: Bounded retransmission protocol

The BRP is depicted in Figure 7. Note that the medium between the RC and the TV is
represented by two separate entities K and L, which can pass on a datum or lose it at random.
The dotted lines between these entities and the timer 77 designate that losing a datum or
an acknowledgement triggers 77 to send a time-out to the RC via channel G. Similarly, the
dotted line between the RC and the timer 75 designates that if the RC gives up transmitting
a data packet, then this is followed by a delay that is sufficiently long for 75 to send a time-out
to the TV via channel H.

Groote and van de Pol [38] specified the BRP in process algebra, and verified that the
protocol exhibits the required external behaviour. Alternative specifications and verifications
of the BRP can be found in [1, 23, 38, 46].

First, we give an informal description of the process algebra specification for the BRP,
and explain its required external behaviour. Next, we present the formal specification, and
derive algebraically its actual external behaviour. Our specification is a simplification of the
specification in [38], where setting and resetting the timers is performed by explicit actions,
error messages are more sophisticated, and special actions are needed in order to enforce
synchronisation of the RC and the TV.

Suppose the RC receives a data packet (di,...,dy) via channel A. Then the RC transmits
the data elements di, ... ,dy separately, where the last datum dp is supplied with a special
label last. Furthermore, each datum is supplied with an alternating bit 0 or 1: data elements
dop_1 are supplied with bit 0 while data elements dop are supplied with bit 1. If the RC
sends a pair (d;, b) into channel B for the first time, then it implicitly sets the timer 77, and
moreover it sets a counter at zero to keep track of the number of failed attempts to send
datum d;. Now there are two possibilities:

1. The RC receives an acknowledgement ack via channel F. Then it sends out the next
pair (dj+1,1 — b), sets the timer 77, and gives the counter the value zero.

2. The RC receives a time-out from the timer 7; via channel G. Then it sends out the
pair (d;,b) again, sets the timer 77, and increases the value of the counter by one.

46 5 PROTOCOL SPECIFICATIONS

Transmission of the data packet is either completed successfully, if the RC receives an ac-
knowledgement from the TV that it received the last datum dy of the packet, or broken off
unsuccessfully, if at some point the counter reaches its preset maximum value maz. In the
first case, the RC sends the message Ipox into channel A, to inform the outside world that
transmission of the data packet (dy,... ,dn) was concluded successfully. In the second case,
the RC sends the message Iyok into channel A, to inform the outside world that transmission
of the data packet failed.

If the TV receives a pair (d;, b) via channel C for the first time (which can be judged from
the attached bit), then it sends d; into channel D if 4 > 1, or the pair (d;, first) if i = 1, to
inform its corresponding partner in the outside world that this is the first datum of a new
data package. Next, it sends and acknowledgement ack into channel E. Now there are three
possibilities:

1. The TV receives the next pair (d;;1,1 — b) via channel C. Then it sends d;y; into
channel D and ack into channel E.

2. The TV receives the pair (d;, b) again. Then it only sends ack into channel E.

3. The TV receives a time-out from the timer 75 via channel H, signalling that the RC
has given up transmission of the data packet.

This procedure is repeated until the TV may receive a message (d, b, last), in which case it
sends the pair (d,last) into channel D, informing its corresponding partner in the outside
world that this successfully concludes transmission of the data packet.

K and L represent the non-deterministic behaviour of the medium between the RC and the
TV. If K reads a message via channel B, then it may or may not pass on this message to the
TV via channel C. In the latter case, the timer 77 will eventually send a time-out to the RC.
Similarly, if L reads a message via channel E, then it may or may not pass on this message
to the RC via channel F. In the latter case, the timer 77 will eventually send a time-out to
the RC.

This almost finishes the informal description of the BRP. However, there is one aspect of
this protocol that has not yet been discussed, concerning error messages. This characteristic
is explained using the specification of the required external behaviour, which is depicted in
Figure 8. The clockwise circle in this picture represents successful transfers of data elements
(starting at the leftmost node), while the transitions that digress from this circle are error
messages that are sent into channel A.

There is one special case with respect to the messages that are sent into channel A, at
the end of transmission of a data packet. Suppose the RC attempted to send the final
triple (dn, b, last) to the TV, but that it did not receive an acknowledgement, even after the
maximum number of tries. Then the RC does not know whether the TV received the datum
dp, so it cannot be certain that transmission of the data packet was concluded successfully.
In this case the RC sends a special error message Ipx into channel A.

We proceed to present the process declaration that formally specify the BRP in process
algebra. This process declaration exhibits the external behaviour depicted in Figure 8, inter-
twined with non-invisible 7-transitions.

5.2 Bounded retransmission protocol 47

sp(du, first)

sa(Inok)

Figure 8: External behaviour of the BRP

In order to simplify the specification, we assume that the data packets that reach the RC
via channel A have length > 2, and that maxz > 2. The process declaration uses the following
data parameters and functions.

- dranges over a finite data set A, and £ ranges over the set A of lists of data of length > 2.
head(£) represents the first element of the list #, and tail(£) represents the remaining
list: head(dy,...,dy) =d; and tail(dy,... ,dy) = (do,... ,dN)-

- b ranges over {0,1}, while n ranges over {0,...,maz}, where maz is the maximum
number of attempts that the RC is allowed to undertake to transmit a datum to the
TV.

- Finally, we have the acknowledgement ack, the time-out to, the appendices first and
last for the first and last datum of a data packet, and the messages Ipk, INok, and
Ipk for the outside world.

We start with the specification of the RC; its initial state is represented by the process

48

name X:

(n < maz) Z(¢,b,n)

5 PROTOCOL SPECIFICATIONS

X = ZE:A TA (e)Y(e’ 0, O)
Y (£,b,n) sg(head(£),b)-Z(£,b,n)
Y (d,b,n) d,b,last)-Z(d,b,n)

rr(ack)-Y (tail(£),1 — b,0)

ra(to)-Y (£,b,5(n))
Z(£,b, maz) rr(ack) Y (tail(€),1 — b
(n < maz) Z(d,b,n) rr(ac) salor)-X

ra(t0)-Y (d, b, S(n))
TR ack) salor)-X
ra(to)-sa(Ipk)-su(to)-X

sB(

(ac

(
(- 50)
ra(to)-sa(Inok)-su(to)-X

(a

(¢

Z(d,b, max) (

(

+ 0+ 0+ 0+

The intuition behind these process declarations is as follows. Let [range over lists of data of
length > 1.

e In state X, the RC waits until it receives a data packet £ via channel A, after which it
proceeds to Y (£,0,0). The first zero represents the bit that is going to be attached to
head(£), while the second zero represents the counter.

e In state Y(I,b,n), the RC attempts to send the head of list [to the TV via channel B,
with bit b attached to it. If [consists of a single datum, then moreover a label last is

attached to this message. The counter n registers the number of unsuccessful attempts
to send the head of [to the TV.

e In state Z(l,b,n), the RC waits for either an acknowledgement via channel F or a
time-out via channel G.

- Suppose the RC receives an acknowledgement from the TV. If [consists of two or

more data elements, then it proceeds to send the head of tail(l) to the TV, with
bit 1 — b attached to it and the counter starting at zero. If [consists of a single
datum, then it concludes successful transmission of the data packet by sending
Iok into channel A, and proceeds to state X.

Suppose the RC receives a time-out from the timer 77. If n < maz, then it
sends the pair (head(l),b) to the TV again, with the counter increased by one. If
n = maz, then it concludes that transmission of the data packet was unsuccessful
(if I consists of two or more elements) or may have been unsuccessful (if [consists
of a single element), by sending Inoxg or Ipg into channel A, respectively. This
message is followed by a delay, sufficiently long to let the timer 75 send a time-out
to the TV via channel H, after which the RC proceeds to state X.

5.2 Bounded retransmission protocol 49

Next, we specify the TV; its root state is represented by the process name V:

\%4 = > sarc(d,0)sp(d, first)-sg(ack)-W(1)
+ Y salre(d,0,last) +rc(d, 1, last))-sg(ack)-V
+ ru(to)V
W(b) = Y sarcl(d,b)-sp(d)-se(ack)-W(1l—b)
+ Y aarc(d,b,last)-sp(d, last)-sg(ack)-V
+ > sarcl(d,1—b)-su(ack)-W(b)
+ TH(to)-V

The intuition behind these process declarations is as follows.

o In state V, the TV is waiting for the first element of a new data packet, with the bit 0
attached to it. If it receives such a message, then it sends the datum into channel D,
sends an acknowledgement into channel E, and proceeds to state W(1).

If the TV receives a message with last attached to it, then it recognises that it already
received this datum before: it is the last datum of the data packet that it received
previously. Hence, the TV only sends an acknowledgement into channel E, and remains
in state V.

Finally, the TV may receive a time-out from the timer 75 via channel H, which signals
that the RC never received an acknowledgement for the last datum of the previous data
packet, or that the RC failed to transfer a single datum of some new data packet. Then
the TV remains in state V.

e In state W(b), the TV has received some but not all data of a packet from the RC,
and is waiting for a datum with the bit b attached to it. If it receives such a message,
then it sends the datum into channel D, sends an acknowledgement into channel E, and
proceeds to state W (1 —b) to wait for a message with the bit 1 — b attached to it. If the
TV receives a message with not only b but also last attached to it, then it concludes
that the data packet has been transferred successfully. In that case it sends both the
datum d and the message Ipx into channel D, sends an acknowledgement into channel
E, and proceeds to state V.

If the TV receives a message with the bit 1—b attached to it, then it already received this
datum before. Hence, it only sends an acknowledgement into channel E, and remains
in state W (b).

Finally, the TV may receive a time-out from the timer 75 via channel H, which signals
that the RC has given up transmission of the data packet. Then the TV sends the error
message Iyog into channel D and proceeds to state V.

Finally, we specify the mediums K and L:

K = >un Zb:{0,1}{7"B(d’ b)-(sc(d,b) + sa(to))-K
+ rg(d, b, last)-(sc(d, b, last) + sg(to))-K'}

L = rg(ack)-(sp(ack) + sg(to))-L

The intuition behind these process declarations is as follows.

50 5 PROTOCOL SPECIFICATIONS

o If K receives a message from the RC via channel B, then either it passes on this message
to the TV via channel C, or it loses the message. In the latter case, the subsequent
delay triggers the timer 77 to send a time-out to the RC via channel G.

o If L receives an acknowledgement from the TV via channel E, then either it passes on
this acknowledgement to the RC via channel F, or it loses the acknowledgement. In the
latter case, the subsequent delay triggers the timer 7; to send a time-out to the RC via
channel G.

The initial state of the BRP is expressed by
m(0u(V || X | K || L))

where the set H consists of the read and send actions over the internal channels B, C, E, F,
G, and H, while the set I consists of the communication actions over these internal channels.

The process term 77(0g(V || X || K || L)) exhibits the required external behaviour (see
Figure 8), intertwined with non-silent 7-transitions.

Exercise 5.3 Give a uCRL specification of the BRP and its data types, where the lists of
data that are being transmitted contain three elements, and the maximum number of retries
is four.

5.3 Sliding window protocol

In the ABP and the BRP, the Sender sends out a datum and then waits for an acknowledge-
ment or a time-out before it sends the next datum. In situations where transmission of data
is relatively time consuming, this procedure tends to be unacceptably slow. In sliding window
protocols (see [70]), a Sender can send out data elements without waiting for acknowledge-
ments. See [13, 17] for specifications and verifications of sliding window protocols in process
algebra.

BTEINE
A D
—_— S R —
n—1| 0 n—1 0
— 1 n—2 1
n—3 2 n—3 2

Figure 9: Sliding window protocol

Again we assume that the elements from a data domain A that are sent from a Sender to a
Receiver may get lost. We specify a sliding window protocol (SWP) in which the Sender and

5.3 Sliding window protocol 51

the Receiver store incoming data elements in buffers of the same size n; see Figure 9. At any
time, each buffer is divided into one half that may contain data elements, and one half that
must be empty. The part of the buffer that may contain data elements is called its window.

The buffer is modelled as a list of pairs (d, k) with d € A and k € Nat, representing that
position k of the buffer is occupied by datum d. The data type Buffer is specified as follows,
where [| denotes the empty buffer:

[] :-— Buffer
in : A X Nat X Buffer — Buffer

The nature of positions in buffers is firmly linked with so-called modulo arithmetic (see, e.g.,
[24]). Two natural numbers are considered equal modulo n if their difference is divisible by
n. It is not hard to see that this defines an equivalence relation on natural numbers, with
equivalence classes 0,... ,n — 1.

In the remainder of this section, n is a special parameter representing the size of the buffer.
In the uCRL specification of the SWP, one can declare n :— Nat, and this function symbol
of arity zero can be instantiated with its desired value in the algebraic specification of the
natural numbers.

For k € {0,... ,n — 1}, let succmod(k) denote the equivalence class of the successor of k
modulo n; in particular, succmod(n — 1) = 0. The operator succmod : Nat — Nat is defined
by the following equation, where if : Bool X Nat x Nat — Nat is the if-then-else function
from Exercise 2.6 and eq : Nat X Nat — Bool is the equality function on natural numbers
from Section 2.3:

sucemod(m) = if (eq(S(m),n),0,S(m))

In the SWP, the Sender reads data elements from channel A and stores them in the window
of its buffer. Each incoming datum is stored at the next free position in the window; in other
words, if the previous incoming datum was stored at position k, then the current one is stored
at position k£ + 1, modulo n. At any time, the Sender can send a datum from its window
into channel B, paired with its position number. The Receiver stores the data elements that
it reads via channel C in the window of its buffer; if it receives a pair (d, k), then datum d
is stored at position k. If (d, k) is the first pair in its window, then the Receiver can send
datum d into channel D, remove the pair (d, k) from its buffer, and slide its window beyond
position k. The Receiver can also send as an acknowledgement a number k into channel E,
to inform the Sender that it received all data elements up to (but not including) position
k; if previously the Receiver sent an acknowledgement ¢, and it received data elements for
positions £ up to £+ m (modulo n), then it can send the acknowledgement £+ m + 1. Upon
reception of such an acknowledgement via channel F, the Sender eliminates all acknowledged
pairs from its buffer, and slides its window accordingly.

In the ABP and the BRP we used an alternating bit to make it possible for the Receiver to
distinguish old from new data elements. In the SWP, we use the restriction that the sending
and receiving window may not extend beyond half the size of the sending and receiving buffer,
respectively. If the Receiver reads a pair (d, k) from channel C where k is within its window,

52 5 PROTOCOL SPECIFICATIONS

then the Receiver can be certain that it did not yet send datum d (at position k) into channel
D.

We proceed to specify the SWP in process algebra. We assume that the sending and
receiving buffers have a predefined size n, and that the sliding windows in these buffers are
restricted to maz-fill positions, where maz-fill is not allowed to exceed n/2. Again, in the
uCRL specification of the SWP, one can declare maz — fill :— Nat, and this function symbol
of arity zero can be instantiated with its desired value in the algebraic specification of the
natural numbers.

The specification of the SWP uses some auxiliary functions on buffers. remove(k,t) is
obtained by emptying position k in buffer ¢, add(d,k,t) is obtained by placing datum d at
position k in buffer ¢, retrieve(k,t) produces the datum that resides at position &k in buffer ¢
(if this position is occupied), and test(k,t) produces t if and only if position % in ¢ is occupied.
These four functions are defined by:

remove(k,) =

remove(k,in(d,£,t)) = if(eq(k,£),t, remove(k,t))
add(d, k,t) = in(d, k, remove(k,t))
retrieve(k,in(d,£,t)) = if(eq(k,?),d, retrieve(k,t))
test(k,[]) = f

test(k,in(d,,t)) = if(eq(k,?),t, test(k,t))

The second equation of remowve implicitly assumes that there is at most one datum at each
position in a buffer. For example, a buffer must not be of the form in(d, k,in(d,k,[))),
because remove(k,in(d, k,in(d',k,[]))) would produce the erroneous result in(d', k,[]). In
order to support the assumption that there is no overloading of positions in buffers, it is
essential that at the right-hand side of the equation for add(d, k,t), position & in ¢ is emptied.

release (k, £,t) is obtained by emptying positions k up to £ in ¢, modulo n. That is, if
k < £ then positions k,... ,£ — 1 are emptied, while if £ < k then positions k,... ,n — 1 and
0,...,¢—1 are emptied. release is defined by:

release(k, ,t) = if (eq(k,), t, release (succmod (k), £, remove(k,t)))

In the case of innermost rewriting (see Section 2.2), the algebraic specification above does
not terminate. This is due to the fact that its left-hand side can be applied to the subterm
release (succmod (k), £, remove(k,t)) in its right-hand side. This problem can be solved by
adapting the equation for release to:

release(k, 2, []) =
release(k, ¢,in(d, m,t)) if (eq(k, £), in(d, m,t), release(succmod (k), £, remove (k, in(d,m,t))))

In the specification of the SWP below, for clarity of presentation, two of the conditions
<> are formulated in natural language. For algebraic formulations of these conditions, the
reader is referred to the exercises. If k£ and £ are in {0,... ,n — 1}, then with the range from
k to £ (modulo n) we mean either £ — k + 1 (i.e., the number of elements in {k,... ,¢}) if
k<t orn—k+£+1 (ie., the number of elements in {k,... ,n —1} U{0,... ,£}) if £ < k.

5.3 Sliding window protocol 53

The Sender is modelled by the process X (first-in, first-empty, buffer), where buffer rep-
resents the sending buffer of size n, first-in the first position in the window of buffer, and
first-empty the first empty position in (or just outside) the window of buffer.

X (first-in, first-empty, buffer)

= > uara(d)-X(first-in, succmod (first-empty), add (d, first-empty, buffer))
< “the range from first-in to first-empty does not exceed maz-fill’ > §

+ D p.Na SB(retrieve(k, buffer), k)- X (first-in, first-empty, buffer)
atest(k, buffer) > 6

+ D kNa TR(E)- X (K, first-empty, release(first-in, k, buffer))

The specification of the Receiver uses a function nezt-empty(k,t), producing the first empty
position in ¢ starting from k, modulo n:

next-empty(k,t) = if (test(k,t), next-empty(succmod(k),t), k)

Again, in the case of innermost rewriting, the algebraic specification above does not ter-
minate. This is due to the fact that its left-hand side can be applied to the subterm
next-empty(succmod(k),t) in its right-hand side. This problem can be solved by adapting
the equation for next-empty to:

nezt-empty (k, []) =k
next-empty(k, in(d,£,t)) = if(test(k,in(d,¥,t)), next-empty(succmod(k), remove(k,in(d, £, t))), k)

We proceed to specify the Receiver, modelled by the process Y (first-in, buffer), where
buffer represents the receiving buffer of size n, while first-in represents the first position in
the window of buffer.

Y (first-in, buffer)

= D aA 2pnat TC(d k)-(Y (first-in, add(d, k, buffer))
< “the range from first-in to k does not exceed maz-fill’ > Y (first-in, buffer))

+ sp(retrieve(first-in, buffer))-Y (succmod (first-in), remove (first-in, buffer))
Qtest(first-in, buffer) > §

+ sg(next-empty(first-in, buffer))-Y (first-in, buffer)

Finally, we specify the mediums K and L, which may lose messages between the Sender
and the Receiver, and vice versa.

K = > 4a 2 knamB(d) (5-sc(d, k) +j)-K
L = > knare(k)(G-se(k) +7)-L

The initial state of the SWP is expressed by

71(0r (X(0,0,) [Y'(0, 1) | K[| L))

54 5 PROTOCOL SPECIFICATIONS

where the set H consists of the read and send actions over the internal channels B, C, E, and
F, while the set I consists of the communication actions over these internal channels together
with j.

Ideally, data elements that are read from channel A by the Sender are sent into channel D
by the Receiver in the same order, and no data elements are lost. It can be shown, using the
uCRL tool set, that this property holds for specific data sets A, and for small buffer sizes
n. However, it is an open question whether the SWP as specified above displays the desired
external behaviour for general data sets and buffer sizes.

Exercise 5.4 Define a function plusmod : Nat x Nat — Nat, where for k,£ € {0,... ,n—1}
plusmod (k, £) produces the equivalence class of k + £ modulo n in {0,... ,n — 1}.

Also define a function ordered : Nat x Nat x Nat — Bool, where ordered (k, £, m) produces
t if and only if £ lies in the range from k£ to m — 1, modulo n; that is, if ¥ < m < n then
ted{k,..., m—1},andif m<k<nthente{k,...,n —1}U{0,... ,m —1}.

Use the functions plusmod and ordered to give an algebraic formulation of “the range from
k to £ does not exceed m”.

Exercise 5.5 Give a uCRL specification of the SWP and its data types. Use the yCRL tool
set to analyse this specification, where A = {di,d>}, the buffer size n is four, and maz-fill is
two.

Exercise 5.6 Suppose the buffer size n is three and maz-fill is two (violating the restriction
that maz-fill must be no more than n/2). Give an execution trace of i (X (0,0,[]) || Y(0,[]) ||
K || L) in which a datum is erroneously sent out via channel D more than once.

In the two-way SWP, not only the Sender reads data elements from channel A and passes
them on to the Receiver, but also the Receiver reads data elements from channel D and passes
them on to the Sender; see Figure 10. In the two-way SWP, the Sender has two buffers, one
to store incoming data elements from channel A, and one to store incoming data elements
from channel F; likewise for the Receiver. Note that in the two-way SWP, the Sender and
the Receiver are symmetric identities, and likewise for the mediums K and L.

Exercise 5.7 Give a uCRL specification of the two-way SWP. Use renaming to extract the
Receiver and L from the process declarations of the Sender and K, respectively.

In the two-way SWP, acknowledgements that are sent from the Sender to the Receiver, and
vice versa, can get a free ride by attaching them to data packets. This technique, which is
commonly known as piggybacking, promotes a better use of available channel bandwidth.

Exercise 5.8 Give a yCRL specification of the Sender in the two-way SWP with piggyback-
ing.

Piggybacking as described in Exercise 5.8 slows down the two-way SWP, since an acknowl-
edgement may have to wait for a long time before it can be attached to a data packet.
Therefore, the Sender and the Receiver ought to be supplied with a timer (cf. the BRP),

5.4 Tree identify protocol 55

Figure 10: Two-way sliding window protocol

which sends a time-out message if an acknowledgement must be sent out without further
delay; see [70] for more details.

Exercise 5.9 Give a uCRL specification of the two-way SWP with piggybacking supplied
with timers.

Bezem and Groote [13] gave a uCRL specification of the one-bit two-way SWP with pig-
gybacking and timers, where the window size is limited to one, and proved that their speci-
fication exhibits the desired external behaviour.

5.4 Tree identify protocol

TEEE 1394 connects together a collection of systems and devices in order to carry all forms of
digital video and audio quickly, reliably, and inexpensively. Its architecture is scalable, and
it is “hot-pluggable”, so a designer or user can add or remove systems and peripherals easily
at any time. The only requirement is that the form of the network should be a tree (other
configurations lead to errors).

The protocol is subdivided into layers, in the manner of OSI, and further into phases,
corresponding to particular tasks, e.g. data transmission or bus master identification. Much
effort has been expended on the description and verification of various parts of the standard,
using several different formalisms and proof techniques. For example, the operation of sending
packets of information across the network is described using pCRL in [56] and using E-
LOTOS in [68]. The former is essentially a description only, with five correctness properties
stated informally, but not formalised or proved. The exercise of [68] is based on the uCRL
description, adding another layer of the protocol and carrying out the verification suggested,
using the tool CADP [30].

In this section we concentrate on the tree identify phase of the physical layer, which occurs
after a bus reset in the system, e.g. when a node is added to or removed from the network.

56 5 PROTOCOL SPECIFICATIONS

The purpose of the tree identify protocol (TIP) is to assign a (new) root, or leader, to the
network. Essentially, the protocol consists of a set of negotiations between nodes to establish
the direction of the parent-child relationship. Thus, from a general graph a spanning tree is
created (where possible). Potentially, a node can be a parent to many nodes, but a child of
at most one node. A node with no parent (after the negotiations are complete) is the root.
The TIP must ensure that a root is chosen, and that it is the only root chosen.

We present two specifications of the TIP in yCRL; one with synchronous and one with
asynchronous communication. In the case of asynchronous communication matters can be-
come more complicated, as two nodes can simultaneously send a parent request to each other.
In the IEEE 1394 standard, such a situation, called root contention, is resolved using a proba-
bilistic approach. If two nodes are in root contention, then with probability 0.5 a node resends
a parent request, or with probability 0.5 a node waits for a certain period of time whether it
receives a parent request. Root contention is resolved if one node resends a parent request
while the other node waits to receive a parent request. The two uCRL specifications of the
TIP in this section, which originate from [67], do not take into account timing aspects and
probabilities. They were derived with reference to the transition diagram in Section 4.4.2.2
of the standard [49].

If the network is connected, and there are no cycles, then specifications of both the syn-
chronous and the asynchronous version of the TIP ultimately produce one root. A verification
of the synchronous version of the protocol is presented in Section 7.

For a formal specification of the TIP using I/O automata, and for an analysis of timing
aspects and probabilities, see [27, 65, 69].

Implementation A: Synchronous Communication We assume a network, consisting
of a collection of nodes and connections between nodes. The aim of the TIP is to establish
parent-child relations between connected nodes. The final structure should be a tree, meaning
that each node has at most one parent, and exactly one node has no parent at all; this last
node is called the root of the network.

In order to establish parent-child relations, a node can send a parent request to a neigh-
bouring node, asking that node to become its parent; a parent request from node ¢ to node
j is represented by the action s(7,j), which communicates with the read action r(i,7) to
c(i,7). In the first implementation of the TIP, which is presented here, communication is
synchronous, so that a parent request from the sending node is instantly read by the receiv-
ing node; in other words, c(i,j) establishes a child-parent relation between the nodes i and
j. So, as channels are supposed to be secure, there is no need for acknowledgements.

Each node keeps track of the neighbours from which it has not yet received a parent
request; of course, initially this list consists of all neighbours. If a node i is the parent of all
its neighbours except of some node 7, then i is allowed to send a parent request to j. In the
case that a node received parent requests from all its neighbours, this node declares itself
root of the network.

Apart from the standard data types of booleans and of natural numbers, the yCRL spec-
ification of Implementation A, which is given below, includes data types for nodes, for lists

5.4 Tree identify protocol 57

of nodes and for states. The latter data type consists of elements 0 and 1, where a node is
in state 0 if it is looking for a parent, and in state 1 if it has a parent or is the root. The
process name Node(i,p, s) represents node 7 in state s, with as list of possible parents p.

NOd(i(’i,p,O) = Ej:NlistT(jai)'NOde(iap\{j}aO) <]j pré
+ Zj:Nlist s(%,7)-Node(i,p,1) ap ={j} >4
Node(i,[],0) = leader(i)-Node(s,[], 1)

The initial state of Implementation A consists of the parallel composition of the node pro-

cesses for the nodes ni,... ,n in state 0, with as possible parents the lists of all neighbours
P1y--- , PE:
71(0n (Node(n1,p1,0) || - - | Node(ng, px,0)))

Here, H consists of all read and send actions between neighbours, while I consists of all
communication actions between neighbours. Note that the architecture of the network is
recorded by the lists p1,... , pg.

In Section 7 it is proved formally that if a network is connected and free of cycles, then the
specification above produces one root.

O—EZO
ni ng

Ny

Example 5.1 The network

is captured by
TI(BH(X(TLO’ {n17n27n3}’0) “ X(nla {7’),0},0) || X('n’Q’ {'I’Lo},()) || X(n3’{n0}70)))

where H consists of all read and send actions between ny and the other three nodes, while
I consists of all communication actions between ng and the other three nodes. The external
behaviour is:

Exercise 5.10 Explain why the 7-transitions in the external behaviour depicted in Figure
11 are not silent.

Exercise 5.11 Consider the network

n2

1 (6 bno

Give the pCRL specification of the initial state of this network. Explain why in this case no
root will be elected.

58 5 PROTOCOL SPECIFICATIONS

leader(nl) leader(n3)

leader(n2) leader(n0)

Figure 11: External behaviour of the TIP

Implementation B: Asynchronous Communication Implementation A assumes syn-
chronous communication between nodes. In reality, messages are sent by variations in voltage
along wires of various lengths. Hence, these messages are not received instantaneously, so
communication is asynchronous. This means that a node may ask to be a child of its neigh-
bour, while that neighbour already sent a message asking to be its child (but the messages
have crossed in transmission). That situation, called root contention, needs to be resolved.

In Implementation B, unidirectional one-place buffers are introduced to model asynchronous
communication between nodes, there are two buffers of each pair of neighbours. As commu-
nication is asynchronous, it is no longer guaranteed that a parent request will be accepted, as
opposite parent requests may cross each other. Therefore, parent requests, which carry the
label req, are acknowledged by an opposite message carrying the label ack. There are read,
send and communication messages from nodes to buffers, denoted by 7/, s’ and ¢/, and from
buffers to nodes, denoted by r, s and c.

Again, individual nodes of the network are specified as separate processes, which are put
in parallel with the one-place buffers. In Implementation B, a node can be in five different
states, which can roughly be described as follows:

0: receiving parent requests;

1: sending acknowledgements, followed by sending a parent request or performing a leader
action;

2: waiting for an acknowledgement;
3: root contention;

4: finished.

5.4 Tree identify protocol 59

send req

(only one neighbour)

O receive req

send ack receive final req

(one remaining re

send ack . send ack
receive req

L 1 -1]

send req become leader

(no remgining ack) (no\remaining ack)

receive req

receive ack

Y
\}

Y
S

send req

receive req

3

Figure 12: Relations between the five states

The relations between the five states of a node are depicted in Figure 12. In state 0 the node
is receiving parent requests. If all but one of its neighbours have become its children, the node
can move to state 1 by sending an acknowledgement. Alternatively, if all of its neighbours
have become its children, the node moves to state 1’. In the special case that the node has
only one neighbour, it sends a parent request to this neighbour straight away and moves to
state 2. In states 1 and 1’ the node sends all outstanding acknowledgements; in state 1 the
node can at any time receive a parent request from the remaining neighbour and move to
state 1. As states 1 and 1’ are very similar, in the forthcoming yCRL specification they are
collapsed. If in state 1’ all acknowledgements have been sent, the node emits a leader action
to move to the final state 4. By contrast, if in state 1 all acknowledgements have been sent,
the node sends a parent request to the remaining neighbour and moves to state 2. If in state
2 an acknowledgement is received, then the node moves to the final state 4. Alternatively,
if in state 2 a parent request is received, then the node moves to state 3 to resolve the root
contention with its remaining neighbour. Each of the two nodes in contention throws up a
virtual coin, and with probability 0.5 it either resends a parent request or it waits for a fixed
amount of time whether it receives a parent request. If within this period no parent request
is received, then the two nodes throw up their coins once more. As we do not model timing
or probability aspects, this means that in state 3 ultimately the node either resends a parent

60 5 PROTOCOL SPECIFICATIONS

request and returns to state 2, or receives a parent request and moves to state 1’ to send an
acknowledgement followed by a leader action.

In the uCRL specification of Implementation B, the node ¢ in state s is represented by the
process name Node(i, p, g, s), with p as list of possible parents, and with g as list of neighbours
to which it must still send an acknowledgement. Lists of nodes are built from the standard
constructors [| and in. Moreover, the specification includes the following mappings:

- rem(j,p) removes node j from list p;

- single(p) tests whether list p contains exactly one element, while single(p,j) tests
whether list p consists of a single node 7;

- occur(j,p) tests whether node j occurs in list p;

- empty(p) tests whether list p is empty.

Node(i,p, q,0) v (4,1, req)-Node(i, rem (4, p),in(4, q), if (single(p), 1,0)) < occur(j,p) > &
v 8' (3,4, ack)-Node (i, p, rem (3, q), 1) < single(p) A occur(j,q) > &

. §' (4,7, req)-Node (i, p, g, 2) < single(p, j) A empty(q) > 0

S S

/!

NOde(iapa q, 1) i,], G'Ck)'NOde(iapa Tem(ja Q)a 1) d OCCUT(j, q) >4
i, 4, req)-Node(i, p, q,2) < single(p, j) A empty(q) > ¢
)-Node (i, p, q,4) < empty(p) A empty(q) >0

7
(4, 4, req)-Node(i, [], in(j, ¢), 1) < single(p,) > 6

~

!

+ +
M MMM

<
VY

2 =z

SR
3
=}
S
9]
< =

J:N

Node(i,p,q,2) = r(4,1, ack)-Node(i,p, q,4) < single(p,j) > §

(4,1, req)-Node (i, p, g, 3) < single(p, j) > 0

NOde(’i,p, q, 3) = I:N T(j, ia reQ)'NOde(ia []apa 1) < Single(paj) > 6

v §' (4,5, req)-Node (i, p, ¢, 2) < single(p, j) > 0

+
MM MM M

LS

B(za]) = Tl(i,j,TBQ)'S(i,j,TBQ)'B(i,j)+Tl(zla.7.7GCk)'S(i,jaaCk)'B(i,j)

The initial state of Implementation B consists of the parallel composition of the one-place
buffers and the node processes for the nodes n1,... ,ng in state 0, with as possible parents
the lists of all neighbours p1,... ,p; and with as neighbours that need to be acknowledged
the empty list:

71(0m (Node(n1,p1, [],0) || - -« || Node(ng,px, [],0) | B(ne,ne) || -+ || B(nm, nm)))

Here, H consists of all read and send actions between neighbours, I consists of all com-
munication actions between neighbours, and the pairs (ng,ng),... , (nmy, nyy) are pairs of
neighbours.

Example 5.2 The network

61

O—inio
n ng

)

is captured by

TI(BH(X(”’O’ {n1’n2an3}’ []70) || X(nla {77'0}7 []’0) || X(n27 {77'0}’ []70)
| X (n3,{no},[],0) [| B(no,n1)||B(no,n2)||B(no, n3)||B(n1,m0)||B(nz2, no)||B(ns, m0)))

where H consists of all read and send actions between nodes and buffers, while I consists of
all communication actions between nodes and buffers. The external behaviour of this network
is depicted in Figure 11.

6 Verification techniques

In the previous chapter we presented a number of yCRL specifications. The pyCRL tool set
can be applied to show that these specifications exhibit the desired external behaviour for
specific sets of data. We now set out to prove that these specifications exhibit the desired
external behaviour for general sets of data.

In this chapter we present mathematical tools that will help to analyse the external be-
haviour of uCRL specifications. In the next chapter these mathematical tools will be used
for the formal verification of Implementation A of the TIP.

6.1 Linear process equations

A linear process equation (LPE) [12] is a one-line process declaration that consists of atomic
actions, summations, sequential compositions and conditionals. In particular, an LPE does
not contain any parallel operators, encapsulations or hidings.

Definition 6.1 (Linear process equation) A linear process equation is a process declara-
tion of the form

X(d:D) = Y Y ai(fild, z:))-X (g:(d, w:)) < ha(d,z:) > 6

ol xi:E;

where the I is some index set, and for each i:] we have a; € ActU {7}, f; : D x E; — D,
gi:DXEi—)Da,ndhi:DXEi—)BOOZ.

Intuitively, in the LPE in Definition 6.1, the different states of the process are represented
by the data parameter d:D. Note that D may be a Carthesian product of n data types,
meaning that d may actually be a tuple (dy, ... ,d,). The LPE expresses that in state d one
can perform actions a; for i:I, carrying a data parameter f;(d,z;), under the condition that
hi(d,z;) is true; in this case the resulting state is g;(d,z;). The data types E; help to give
LPEs a more general form that is widely applicable, as not only the data parameter d:D, but

62 6 VERIFICATION TECHNIQUES

also the data parameter x;:F; can influence the parameter of action a;, the condition h; and
the resulting state g;.

Given an LPE X over a data domain d:D, terms
X(do) | -+ [| X(dn)

for dg,... ,dp:D can be equated to Y (dp,...,d,), where Y is an LPE. Groote and van
Wamel [45] presented a formal proof of this fact, using the derivation rule CL-RSP that will
be explained in the next section; moreover, they spelled out the precise syntactic form of
Y. We give an example; note in particular that a communication of actions in the parallel
composition leads to a conjunction of conditions in the resulting LPE.

Example 6.2 Let a|b = ¢, and consider the LPE
X (n:Nat) =a(n)-X(n+1)<n <1008+ b(n)-X(n+2)<n>5p4
For k:Nat, the parallel composition X (nq) || --- || X (ng) is equal to Y (ny,... ,ng), where

Y (ni1:Nat,... ,ng:Nat) =

S a(n) Y (ng=n;+1)an; <104

+ Zl?:l b(n;)Y(n; :==n; +2)<an; >5>46

+ Y= c(ni) Y (n;:=n;+1,n;:=n;+2)an; <10An; >5An; =njANi#j>d

Here, Y(n; := n; + 1) abbreviates Y (ni,... ,n; +1,... ,ng), while Y(n; := n; + 2) and
Y (n; :=n; + 1,n; := n; + 2) denote similar abbreviations.

Exercise 6.1 Describe the following process declaration by means of an LPE:

X =Y
Y = acX

Exercise 6.2 Let a|b = ¢, and consider the LPE
X(n:Nat) = a(f(n))-X(g(n)) ah(n) > 6 + b(f'(n))-X(g'(n)) <I'(n) > 0

Give an LPE Y such that for k:Nat, the parallel composition X (nq) || --- || X(ng) is equal
to Y(nl, e ,nk)

Groote, Ponse and Usenko [42] described how each process declaration in parallel pCRL (the
“p” stands for “pico”) can be transformed into an LPE. Parallel pCRL is a proper subset of
#CRL; basically, in parallel pCRL, atomic actions, summations, sequential compositions and
conditionals are used to build basic processes, to which parallel composition, encapsulation
and hiding can be applied. The linearisation algorithm from [42] underlies the mcrl command
of the uCRL tool set, which transforms a parallel pCRL specification into an LPE; see [73].
Currently, applying mcrl to a uCRL specification that lies outside parallel pCRL produces
an error message; a lineariser for full yCRL is under construction.

6.2 CL-RSP 63

6.2 CL-RSP

Definition 6.3 (Convergent LPE) The LPE in Definition 6.1 is convergent if there exists
a well-founded ordering < on D such that for all 4:1 with a; = 7 we have that, for all e;:F;
and d:D, h;(d, e;) implies g;(d, e;) < d.

If an LPE is convergent, then it cannot exhibit an infinite sequence of 7-transitions. Namely,
Definition 6.3 guarantees that for each 7-transition, the original state d is strictly greater
than the resulting state g;(d,e;), with respect to the ordering <. Since this ordering is
well-founded, there is no infinite decreasing sequence d; > dy > ds > - - - of elements in D.

CL-RSP (Convergent Linear Recursive Specification Principle) [12] says that every conver-
gent LPE has at most one solution.

Theorem 6.4 (CL-RSP) Let the LPE
X(d:D) = 3512 0.m @il fild, i) X (gi(d, zi)) < hi(d, zi) > 6
be convergent. If t(d) ranges over processes such that, for all d:D,
td) = Xirdowm, ailfi(d, i) t(gi(d, i) ahi(d,z;) > 6

then t(d) = X (d) for all d:D.

Convergence is essential for the soundness of CL-RSP. For example, consider the LPE X =
7-X <t d; note that this LPE not convergent. By axioms B1 and C1 (see Tables 7 and 5,
respectively) we have, for all a € Act, 7-a = 7-7:a = 7-7-a <t > §. So without the restriction

to convergent LPEs, CL-RSP would yield 7-:a = X for all a € Act. Clearly, these equalities
are not sound, in the sense that 7-a and 7-b are not branching bisimilar if a # b.

From now on, for notational convenience, expressions X (_) <t> d in LPEs are abbreviated
to X ().

Example 6.5 Consider the following two LPEs:
X(m:Nat) = a(2m)-X(m+1)
Y(n:Nat) = a(n)Y(n+2)

Substituting Y (2m) for X (m) in the first LPE, for m:Nat, yields Y (2m) = a(2m)-Y (2(m+1)).
This equality follows from the second LPE by substituting 2m for n. Since the LPE for X is
convergent, by CL-RSP

Y(2m) = X(m)
for m:Nat.

Exercise 6.3 Give a formal proof, using CL-RSP, that the parallel composition X (n1) ||
-+ || X(ng) in Example 6.2 is equal to Y (nq,... ,ng), for k = 2.

64 6 VERIFICATION TECHNIQUES

6.3 Invariants

Definition 6.6 (Invariant) A mapping Z : D — Bool is an invariant for the LPE in
Definition 6.1 if, for all #:1, d:D and e;: E;,

Z(d) Ahi(d, ei) = Z(gi(d, €:)) (7)
Intuitively, an invariant characterises the set of reachable states of an LPE. That is, if Z(d) = t
and if one can evolve from state d to state d’ in zero or more transitions, then Z(d') = t.
Namely, if Z holds in state d and it is possible to execute a;(f;(d,e;)) in this state (meaning
that hi(d,e;) = t), then it is ensured by (7) that Z holds in the resulting state g;(d,e;).

Invariants tend to play a crucial role in algebraic verifications of system behaviour that
involve data.

Example 6.7 Consider the LPE X (n:Nat) = a(n)-X(n + 2). Invariants for this LPE are

t ifn is even f ifniseven

Tin) = {f if n is odd Ta(n) = {t if n is odd

Exercise 6.4 Show that the mappings Z; and Z, in Example 6.7 are invariants.

Exercise 6.5 Show that the mappings Z;(d) = t for all d:D and Zy(d) = f for all d:D are
invariants for all LPEs.

Exercise 6.6 Consider the LPE

Y (n:Nat) = Z aY(2m ~n)dam+n <5040
m:Nat
Give the “optimal” invariant Z for this LPE with Z(0) = t. The same for Z(1) = t. (Here,

optimal means that Z(n) = f for as many n:Nat as possible.)

In Theorem 6.4, CL-RSP ranged over the complete data set D. That is, if the LPE X(d)
and the processes t(d) agreed for all d:D, then we could conclude t(d) = X (d) for all d:D.
Actually, it is only necessary to show that X (d) and t(d) agree for all reachable data elements,

which can be characterised by some invariants. Of course, in this case we can only conclude
t(d) = X (d) for data elements d with Z(d) = t.

Theorem 6.8 (CL-RSP with invariants) Let the LPE
X(d:D) = 3251 X 0:m; 0l fild, i) X (gi(d, 73)) < hi(d, z;) > 6

be convergent, and let T : D — Bool be an invariant for this LPE. If t(d) ranges over processes
such that, for all d:D with Z(d) = t,

td) = X1 p.g, ailfild 2i))t(gi(d, z:)) < hi(d, i) > 6

then t(d) = X (d) for all d:D with Z(d) = t.

6.4 Cones and foci 65

Example 6.9 Let even : Nat — Bool map even numbers to t and odd numbers to f. Consider
the following two LPEs:

X(n:Nat) = a(even(n))-X(n+ 2)
Y = a(t)Y

Substituting Y for X (n) for even numbers n in the first LPE yields Y = a(t)-Y, which follows
from the second LPE. Since

I(n) = {t if n is even

f ifnisodd

is an invariant for the first LPE (cf. Example 6.7), and this LPE is convergent, by Theorem
6.8

X(n) =Y

for even n.

6.4 Cones and foci

The cones and foci technique of [43] aims to eliminate internal actions from an LPE. The
main idea of this technique is that usually internal events progress silently towards a state
in which no internal actions can be executed. Such a state is declared to be a focus point;
the cone of a focus point consists of the states that can reach this focus point by a string
of internal actions. Imagine the transition system forming a cone or funnel pointing towards
the focus. Figure 13 visualises the core idea underlying this method. Note that the visible
actions at the edge of the depicted cone can also be executed in the ultimate focus point;
this is essential if one wants to apply the cones and foci technique, as otherwise the internal
actions in the cone would not be silent.

Assume an LPE X such that each of its states belongs to the cone of some focus point. In
the cones and foci technique. The states of X are mapped to states of an LPE Y without
internal actions (intuitively, Y represents the external behaviour of X). This state mapping
¢ must satisfy a number of matching criteria, which ensure that the mapping establishes a
branching bisimulation relation between the two LPEs in question, and moreover that all
states in a cone of X are mapped to the same state in Y. Informally, ¢ satisfies the matching
criteria if for all states d and d’ of X and a # T:

- d 5 d implies ¢(d) = ¢(d');
_ifd 9 d', then ¢(d) “© ¢(d');

- if d is a focus point for X and ¢(d) “S _, then 4“9 _.

Clearly, it is sufficient if the matching criteria are satisfied for the reachable states of X.
In other words, the matching criteria above can be weakened by adding a condition that
Z(d) = t, where Z is some invariant for X.

66 6 VERIFICATION TECHNIQUES

—= External actions

---= Progressing internal actions

Figure 13: A focus point and its cone

Example 6.10 Below is depicted a mapping ¢ from the nodes in a graph G; to nodes in a
graph G5 without 7’s. Note that each node in G belongs to the cone of some focus point.

G1 ¢ Go

¢ satisfies the matching criteria. Note that ¢ establishes a branching bisimulation relation.

The crux of the cones and foci technique is that the matching criteria can be formulated
syntactically, in terms of relations between data objects. Thus, one obtains clear proof
obligations. We proceed to present precise definitions of the notions that underly the cones
and foci technique, including syntactic formulations of the matching criteria.

We proceed to give a more formal exposition on the cones and foci method. One is allowed
to appoint the focus points in the LPE X by means of a focus condition FCx : D — Bool;
ideally, this focus condition takes the form of a logical formula. Furthermore, in the cones
and foci method as explained below it is assumed that an abstraction operator 7; is applied to
the LPE X, and the actions from I in X assume the role of internal actions (i.e., if d = (&)d’
with ¢ € I, then ¢(d) = ¢(d')). The LPE Y must not contain any actions from 1.

Definition 6.11 (Focus point) Assume an LPE X over D. A focus condition is a mapping

6.4 Cones and foci 67

FCx : D — Bool. If FC(d) =t, then d is called a focus point of X.

Definition 6.12 (Matching criteria) Let I C Act. Assume an LPE

=Y Y a(fa(d, 74))-X (9a(d, 2a)) < ha(d,z4) & 8
a:Act x4:FE,
with a focus condition FC x. Furthermore, assume an LPE without actions from I
Z Z b(fy(d' Y(gy(d', zp)) < hy(d', 2p) > 6

b: ACt\I Ty Eb

A state mapping ¢ : D — D’ satisfies the matching criteria with respect to I if for all c € T
and b € Act\I:

he(d, ec) = ¢(d) = p(gc(d; ec));

ho(d, ev) = hy(d(d), ep);

(FC x(d) A hy(9(d), es)) = hu(d. ep);
ho(d, ep) = fold, en) = fi(#(d), e);
ho(d, e5) = ¢(gb(d, €5)) = gy, (¢(d), ep).

The first matching criterion in Definition 6.12 requires that all the states in a cone of 77(X)
are mapped to the same state of Y. The second criterion expresses that each visible action
in 77(X) can be simulated. Moreover, the fourth criterion ensures that these actions carry
the same data parameters, while by the fifth criterion the resulting states in 77(X) and Y are
still related. Finally, the third criterion expresses that if a state in Y can perform an external
action, then the corresponding focus points in 77(X) are also able to perform this action.

Theorem 6.13 (General Equality Theorem) Let I C Act. Assume an LPE X over D
with a focus condition FC x. Let T be an invariant for X. Suppose each d:D with I(d) =t can
reach a focus point of X by executing a sequence of actions from I. Furthermore, assume an
LPEY without actions from I. If ¢ : D — D' satisfies the matching criteria from Definition
6.12, with respect to I, for all d:D with Z(d) =t, then for all d:D with Z(d) =

T11(X(d)) = 7-Y(¢(d)).
As always, the invariant Z in Theorem 6.13 restricts the collection of reachable states of X.

Exercise 6.7 Let

X(n:Nat) = >, yu@X(n+1)<n=3mp>dé+d-X(n+1)<n=3m+1p0
+ceX(n+1)an=3m+2p9)
Y (b:Bool) = aY(f)abrd+dY(t)a-b>d

Give a focus condition FC x together with a state mapping ¢ : Nat — Bool that satisfies the
matching criteria with respect to {c}.

68 7 VERIFICATION OF THE TREE IDENTIFY PROTOCOL

7 Verification of the tree identify protocol

The process behaviours of the ABP and of the BRP are quite independent of their data parts.
Thus, the verifications of the ABP and of the BRP do not really require the machinery that
has been developed in Section 6. Therefore, these verifications are omitted here; the reader
is referred to [29] for expositions on these verifications. As far as we know, the external
behaviour of the SWP has not yet been verified within a process algebraic framework. See
[13] for a verification of a restricted version of the SWP, where the size of the window is
limited to one.

In this section we give a formal proof that for all connected networks that are free of cycles,
Implementation A of the TIP (see Section 5.4) produces a unique root. This proof uses the
verification techniques explained in Section 6.

We recall that Implementation A, without parametrisation of leader actions, consists of
node processes

X(iapa O) = Zj:NodelistT(jai)'X(iap\{j}ao) <] pr(s
+ D Nodetist $(4:7)- X (4, p, 1) ap = {j} > §
X(Za []70) = leaderX(z, []a]-)

Here, i is the identifier of the node; p is the list of possible parents of node %; and each node
is in state 0 or 1. In state 0 a node is looking for a parent, while in state 1 it has found a
parent or has become the root. A network is specified by

71(01 (X (no, po[nol; 0)|| - - - | X (1k, po[rx], 0)))

where pg[i] consists of the neighbours of 7 in the network. The aim of this section is to show
that the external behaviour of this process term, for any connected network without cycles,
is T-leader-§. Actually, if the network consists of a single node, then no parent requests are
exchanged, so in that special case the external behaviour is leader-J.

By CL-RSP, one can prove that for mappings p from nodes to lists of nodes and mappings
s from nodes to {0,1},

91 (X (no, p[no; s[no]) |l - - - | X (nk, pln], sini]))
is equal to Y (p, s), defined by the LPE
Y (p:Nodelistlist, s:Statelist) =
2 j:Node €5 9) Y (pli] == p[\{s}, s[j] :=1) @ j € pli] Ap[j] = {i} As[t] = s[j] =0
+ Y i Node leader-Y (p, s[i] := 1) « empty(p[i]) A s[i] =04

See Example 6.2 and Exercise 6.3 for examples of how to derive such an equality, using
CL-RSP.

Exercise 7.1 Prove 0y (X (ng, p[nol, s[nol)| - - - | X (ng, p[nk), s[ne])) = Y (p, s) for pairs (p,).

69

We list four invariants for the LPE Y.

Ti(p): j€pli] Vi€ plj]
Ia(p,s) - (4 €pli] Au€plf]) = sli] =1
T3(p, s) : s[j] = 1 = (empty(p[j]) V singleton(p[j]))

Tu(p,s) : (4 € pli] A s[i] = 0) = (i € p[j] A s[j] = 0)

Note that Z,,(po, sg) =t for n = 1,2,3,4. We show that the first three formulas are invariants
for Y.

1. Suppose j € p[i], while after executing some action, in the resulting state j & p[i]. Then
this action was c(j,7), and in the resulting state p[j] = {¢}, so in particular i € p[j].

Likewise, suppose i € p[j], while after executing some action, in the resulting state
i ¢ p[j]. Then this action was c(7,7), and in the resulting state p[i] = {j}, so in
particular j € pl[i].

2. If s[j] = 1, then after performing an action still s[j] = 1.

Suppose s[j] = 0 and j € pl[i], while after executing some action j ¢ p[i]. Then this
action was ¢(7,4), and in the resulting state s[j] = 1.

3. If empty(plj]) V singleton(p[j]), then after performing an action this formula still holds,
because no elements are ever added to p[j].

Suppose s[j] = 0 and p[j] contains more than one element. Then after executing some
action still s[j] = 0.

Exercise 7.2 Prove that 74 is an invariant for Y.

We derive one more invariant 7 for Y, stating that no more than one root is elected.
Namely, if the list p[i] of possible parents of a node ¢ has become empty, then all other nodes
are already finished.

Lemma 7.1 (Uniqueness of the root)
Z(p,s) = (empty(plil) Nj # 1) = slj] =1

Proof. By connectedness, there are distinct nodes i = ig, 41, ... , iy, = j with ix1 € po[ix] for
k=0,...,m—1. We derive, by induction on k, that iy 1 € p[ig], s[ix] = 1 and singleton(p[ix])
for k=1,... ,m — 1. We start with the base case k = 1.

- empty(plio]) = 11 & plio];

- (T1 Ny € polio] Aia & plio]) = io € pli];

- (I2 A1 ¢p[i0] Nig € p[il]) = S[il] =1;

70 7 VERIFICATION OF THE TREE IDENTIFY PROTOCOL

- (Zs A s[in]) = 1 ANig € plir]) = singleton(plii]).

We proceed with the inductive case. We know that ix1; € po[ix] and ig41 # ix—1, and by
induction i1 € plix] and singleton(p|ir]). Hence,

(singleton (plig]) Aik—1 € pik] A tky1 7# ik—1) = ik+1 & Plix;
- (T ANigtr € polik] Aikv1 € plik]) = ik € Plig+1;

- (Zo Nkt & plik] A ik € plikta]) = slig1] = 1;

- (Zg A slig41] = 1 A ig € plig41] = singleton(plix41])-

We conclude that s[ip,] = 1. X

For each pair (p,s), let busy(p,s) return a node 7 with s[i] = 0 (if there is such a node).
By uniqueness of the root, at any time busy(p, s) is the only node that can perform a leader
action. Therefore, using CL-RSP and Lemma 7.1, the summation sign in front of the leader
action in the LPE Y can be eliminated, by instantiating busy(p, s) for the parameter 4 of this
summation. Thus we obtain the following LPE.

Y (p: Nodelistlist, s:Statelist) =
Y ovode €)Y (ol = DN} 5Li) = 1) @ j € plil Aplj) = {3} A sfi] = slj] = 055
+ leader-Y (p, s[busy(p, s)] := 1) <« empty(p[busy(p, s)]) A s[busy(p,s)] =06

Intuitively, we say that (p, s) is a focus point of Y if Y (p, s) cannot execute any c¢(j, 1)-actions.
To be more precise, the focus condition FCy(p,s) is that there do not exist nodes 7 and j
with

pli] = {i} A jepli] A s[i]=s[]=0

If the focus condition does not hold for some pair (p,s), then clearly Y (p, s) can execute a
c(j,1)-action. Since each c(j,%)-action reduces the number of nodes j with s[j] = 0, there does
not exist an infinite execution sequence of such actions. Hence, for each pair (p,s), Y(p, s)
can execute a sequence of ¢(j,7)-actions to reach a focus point for Y.

The LPE for the external behaviour is
Z(b:Bool) = leader-Z(f) «b>§

Clearly, Z(t) = leader-§ and Z(f) = 4.
We define the state mapping ¢ from pairs (p, s) to Bool by

S(p, 5) = t if s[éi] = 0 for some node 4
P8I = f if s[i] =1 for all nodes i

71

Then the matching criteria from Definition 6.12, applied to the LPEs Y and Z, produce the
following four formulas:

(7 € plil Apls] ={i} As[i] = s[j] = 0) = ¢(p,s) = (pli\{5},s[j] := 1);
(empty (p[busy(p, s)]) A s[busy(p, s)] = 0) = ¢(p,s);

(Vi, j:Node(p[j] # {i} Vj € pli] V s[i] = 1V s[j] = 1Vi=j) A d(p,s)) =
(empty (p[busy(p, s)]) A s[busy(p, s)] = 0);

(empty (plbusy(p,)]) A s[busy(p, s)] = 0) = é(p, s[busy(p,s)] := 1) = 1.

We show that the first three of these matching criteria hold.

1. ¢(p,s) =t = (p[i]\{j}, s[j] := 1), because s[i] remains 0.
2. ¢(p,s) =t, because s[busy(p,s)] = 0.

3. Since ¢(p,s) = t there is a node ¢ with s[i] = 0, so also s[busy(p,s)] = 0. Suppose
pl[busy(p, s)] is not empty; we derive a contradiction.

Let j € p[i] and p[i] = 0 for some %,j. By invariant Zy, i € p[j] and s[j] = 0. Then
plj] # {i}, so there is a k # ¢ with k € p[j]. Then similarly s[k] = 0 and there is an
¢ # j with £ € p[k], etc. This contradicts the fact that there is no cycle.

Exercise 7.3 Prove that the fourth matching criterion above holds.

By the General Equality Theorem, if p establishes a connected network without cycles,
then

T11(Y(p,s)) = 7-Z($(p,s))
This implies

7-71(0n (X (no, po[no], 0)|| - - - [| X (r, po[rx], 0)))
= 7-71(Y (po, s0))

= 71-Z(t)

= T1-leader-6

8 Graph algorithms

In this section we present some of the ideas and algorithms that underlie the transformation
and analysis of process graphs that are generated from pCRL specifications. These algorithms
are supported by the yCRL and CADP tool sets.

72 8 GRAPH ALGORITHMS

8.1 Minimisation modulo branching bisimulation

We sketch an algorithm by Groote and Vaandrager [44] to decide whether two finite-state
processes are branching bisimilar (see Definition 4.5). The basic idea of this algorithm is to
partition the set of states of the input graph into subsets of states that may be branching
bisimilar; if two states are in distinct sets, then it is guaranteed that they are not branching
bisimilar. Initially, all states are in the same set. In each processing step, one of the sets in
the partition is divided into two disjoint subsets. This is repeated until none of the sets in
the partition can be divided any further.

We take as input a process graph containing finitely many states. As a preprocessing step,
first we collapse all states in this process graph that are on a 7-loop to a single state. That
is, if there are sequences of 7-transitions s — -+ — s’ and s’ = -+ 5 s, then s and '
are identified. If two states are on a 7-loop, then they are branching bisimilar; see Exercise
4.6. The 7-loops in a process graph can be detected using a well-known algorithm by Tarjan
[71] for finding the strongly connected components in a process graph; see, e.g., [22]. Two
states s and s’ are in the same strongly connected component of a process graph if there exist
execution sequences from s to s’ and vice versa.

In order to explain the minimisation algorithm, we need to introduce some preliminary
terminology. If P and P’ are two set of states, then sy € split (P, P') if there exists a

sequence of T-transitions sy — - -+ — s, for some n > 0 such that s; € Pfori =0,... ,n—1
and s, € P'. Likewise, for a € Act, sg € split,(P, P') if there exists a sequence of transitions
S0 2 -+ 2> $p_1 — sp for some n > 0 such that s; € Pfori=0,... ,n—1 and s, € P'.

The crux of the minimisation algorithm is that, since it is guaranteed that branching
bisimilar states reside in the same set of the partition, a state sg € split,(P, P') and a state
s1 € P\split,(P,P') cannot be branching bisimilar. Namely, so € split,(P, P') implies that
there exists an execution sequence sy — --- — s — s’ with s € P and s’ € P’, and since
s1 & split, (P, P') this execution sequence cannot be mimicked by s;.

The minimisation algorithm works as follows. Suppose that at some point we have con-
structed a partition Pi,... , P, of disjoint non-empty sets of states, where Py U---U Py is the
set of states in the input graph. (Remember that initially this partition consists of a single
set.) If for some 4,5 € {1,... ,k} and b € Act U {7} we have that O C split,(P;, P;) C P;
(where C denotes strict set inclusion), then P; is replaced by the two disjoint non-empty sets
splity(P;, P;) and P;\splity(P;, P;). This procedure is repeated until no set in the partition
can be split in this fashion any further.

Groote and Vaandrager proved that if this procedure outputs the partition @Q1,...,Qy,
then two states are in the same set @); if and only if they are branching bisimilar in the input
graph. Thus, the states in a set J; can be collapsed, producing the desired minimisation of
the input graph modulo branching bisimulation equivalence.

Example 8.1 We show how the minimisation algorithm minimises the process term (a-7 +
7-b)-6. Note that the process graph belonging to this term does not contain 7-loops. Initially,
the set P contains all four states in this process graph.

split, (P, P) consists of the root node only, so that the minimisation algorithm separates

8.1 Minimisation modulo branching bisimulation 73

the root node from the other nodes.

Next, splity (P2, P,) only contains the node belonging to the subterm b-9, so that the min-
imisation algorithm separates this node from the other two nodes in P;.

YL YL

Finally, none of the sets P, Po; and Pso can be split any further, so that we obtain the
following minimised process graph:

/N
ES

b

Exercise 8.1 Apply the minimisation algorithm to the process graphs belonging to the
following process terms and declarations:

(1) (a+ 7b)-6;

2) (a+7(a+b))s;

3) (a7 + 7-a)-6;

(4) (abc+ abd)-o;

(5) a-a-aad;

6) X =X +aY
Y =a-X;

(M X=mX+aY
Y=(a+0b)X

8) X=(r+a)Y
Y=(a+0b)X

Groote and Vaandrager showed that their algorithm can be performed in worst-case time
complexity O(mn), where n is the number of states and m the number of transitions in the
input graph. Their argumentation is briefly as follows. The algorithm to detect 7-loops (or
better, to find strongly connected components) has worst-case time complexity O(m). The
crux of the minimisation algorithm is an ingenious method to decide, for a given partition
Pi, ..., Py, whether there exist ¢, j and b such that (0 C split,(P;, P;) C P;; this method,

74 8 GRAPH ALGORITHMS

which has been omitted here, also requires O(m). Since there can be no more than n — 1
subsequent splits of sets in the partition, the worst-case time complexity is O(mn).

The algorithm of Groote and Vaandrager is an adaptation of a minimisation algorithm
modulo bisimulation equivalence (see Definition 3.6) by Kanellakis and Smolka [50]. Paige
and Tarjan [61] presented a more efficient algorithm to minimise a finite-state process graph
modulo bisimilation equivalence, which has worst-case time complexity O(mlogn). In the
case of minimisation of a large finite-state process modulo branching bisimulation equiva-
lence, it can be wise to first minimise the process modulo bisimulation equivalence, as this
preprocessing step can be performed more efficiently.

Exercise 8.2 Explain how the minimisation algorithm can be adapted to take into account
the successful termination predicate = /.

Weak bisimulation [57] is a popular alternative to branching bisimulation, if one wants to
abstract away from internal behaviour. Weak bisimulation is coarser than branching bisimu-
lation, in the sense that two branching bisimilar processes are by default also weakly bisimilar.
Kanellakis and Smolka [50] presented a minimisation algorithm for weak bisimulation equiv-
alence. Basically it consists of saturating the input graph with 7-transitions, after which
the minimisation algorithm of bisimilation equivalence can be applied, interpreting the 7 as
a concrete visible action. This algorithm is less efficient than the minimisation algorithm
modulo branching bisimulation equivalence.

8.2 Confluence

Milner [57, 59] was the first to recognise the usefulness of the notion of confluence (cf. Section
2.2) when analysing processes that involve the internal action 7. Here we use the following
notion of confluence, which differs from the notion that was originally studied by Milner.
Assume a process graph, together with a set T of 7-transitions in this process graph; let
s 57 s denote that s = s/ € T. We say that T is confluent if for each pair of distinct
transitions s % s’ (with @ € Act U {r}) and s = s” in the process graph, the picture

can be completed in one of the following three fashions:
s s S
! T " ! T " ! T !
s s s'=—:s §'——=s
a TT
T\W/L
T

1
S

!

In the third case, a = 7.

8.2 Confluence 75

Definition 8.2 (Confluence) Assume a process graph L. A collection T' of 7-transitions
in L is confluent if for all transitions s — ¢’ € L and s — s € T

(1) either s’ 5 s € T and s" % s" € L, for some state s";
(2) or s" 5 s € I;

(3) ora=r1and s 5 s" € T

(4) ora =7 and s’ = s".

Groote and van de Pol [39] presented an efficient algorithm to compute, for a given finite-
state process graph, the maximal set T" of 7-transitions that is confluent with respect to this
process graph. Initially it is assumed that all 7-transitions of the process graph are in T,
and subsequently transitions are eliminated from T if they are found to obstruct confluence.
That is, all transitions of the input graph are placed on a stack. In each processing step, a
transition s — s’ is taken from the stack, and for each s — s” € T it is verified whether at
least one of the properties (1)-(4) in Definition 8.2 holds. If this is not the case, then s = s”

m b s that were previously eliminated from the

stack are placed back on the stack. Namely, s b s and some transition s” 5 " € T

may previously have been found not to obstruct confluence due to the fact that s = s” was
erroneously present in 7. This procedure is repeated until the stack is empty, after which
the constructed set 1" is delivered as output.

is eliminated from T, and all transitions s
"

A confluent set T of 7-transitions can be used to trim the corresponding process graph L.
Namely, if s = s’ € T, then s and s’ are branching bisimilar states in L, so that they can
be identified. Even more so, if L does not contain 7-loops, then all transitions of the form
s = s". except the transition s — s’ € T mentioned above, can be eliminated from L without
influencing the branching bisimulation class of s. The next example shows that the absence
of 7-loops in L is essential here.

Example 8.3 Consider the process graph defined by the process declaration X = (7+a)-X;
note that it contains a 7-loop. The 7-transition in this process graph is confluent. If the
a-transition is eliminated from this process graph, then the resulting process graph is defined
by the process declaration Y = 7-Y. Clearly the state belonging to X and the state belonging
to Y are not branching bisimilar.

We give an example of the use of confluence for the compression of process graphs.

Example 8.4 Consider the process graph

76 8 GRAPH ALGORITHMS

VN

A A
K /

The maximal confluent set of 7-transitions contains all six 7-transitions in this process graph.
Compression with respect to this set produces the process graph belonging to a-b-4.

The next example shows that in general the maximal confluent set of 7-transitions is a
proper subset of the collection of silent T-transitions of a process graph.

Example 8.5 Consider the process graph

Its maximal confluent set of 7-transitions is empty. However, the two 7-transitions are both
silent.

This process graph is minimal modulo bisimulation equivalence. So minimisation modulo
branching bisimulation equivalence appears to be the only available method to reduce this
graph.

Assume a finite-state process graph with m transitions. We recall from Section 8.1 that
7-loops can be eliminated from this process graph with worst-case time complexity O(m).
Groote and van de Pol [39] showed that the worst-case time complexity of their algorithm to
compute the maximal confluent set of 7-transitions is also O(m) (under the assumption that
there is a finite number N such that each state has no more than N outgoing 7-transitions).
Thus their algorithm performs better than the minimisation algorithm modulo branching
bisimulation equivalence; see Section 8.1. Moreover, Groote and van de Pol showed by means
of a number of benchmarks that in practice confluence can be considerably more efficient
than minimisation, especially if the input graph is large and the number of 7-transitions is
relatively low. Hence, computing the maximal confluent set of 7-transitions can be a sensible
preprocessing step before applying minimisation modulo branching bisimulation equivalence.
Computation of the maximal confluent set of 7-transitions is supported by the yCRL tool
set.

8.3 Model checking 7

Finally, we note that after compression of a process graph on the basis of its maximal
confluent set of 7-transitions, the resulting process graph may again contain confluent 7-
transitions. An example of this phenomenon is given below. Hence, it makes sense to iterate
the algorithm of Groote and van de Pol until the maximal confluent set of 7-transitions in
the resulting process graph has become empty.

Example 8.6 Consider the process graph that belongs to (7-a-7 + a)-6. The first compres-
sion with respect to the maximal confluent set of 7-transitions produces the process graph
belonging to (7-a + a)-§. The second compression produces the process graph belonging to
(a+a)-d.

Exercise 8.3 Give the maximal confluent sets of 7-transitions of the following four process
graphs:

AT ANPANTS
AV N VAN VAN

8.3 Model checking

Computation tree logic (CTL) [19] is a temporal logic to express properties of process graphs
that do not carry actions on their transitions. ACTL [26] is an extension of CTL to process
graphs with actions. ACTL consists of formulas on states, defined by the following BNF
grammar:

¢ w=T| ¢ | oA | X | ¢US | G

where a ranges over ActU{7}. Here, T is the universal predicate that holds for all states.? As
usual, = denotes negation and A denotes conjunction. The intuition behind the remaining
constructs is as follows.

e X, ¢ holds in a state s if s = s’ where formula ¢ holds in state s';

e ¢U ¢ holds in state s if there is an execution sequence, starting in s, that only visits
states in which ¢ holds, until it visits a state in which ¢’ holds;

e G¢ holds in a state s if there is an execution sequence, starting in s, which cannot be
extended to a longer execution sequence, such that it only visits states in which ¢ holds.

These intuitions can be formalised as follows. Assume an process graph. A full path is
either an infinite execution sequence s «“ s1 4 S9 % .-+, or a finite executsion sequence

2 Actually, CTL assumes a collection of predicates, which hold in part of the states.

78

50 % .

8 GRAPH ALGORITHMS

=S sp where there is no transition s; L 5. The states sg that satisfy an ACTL

formula ¢, denoted by s¢ = ¢, are defined inductively as follows:

S0 IZ T

so | ¢ if so £ &

soEANY ifsgE¢and s =

so = Xa¢ if there is a state s; with sg = s; and 51 = ¢

so = U if there is a path sg =3 - - - “5' s, with s = ¢ for
ke{0,...,£—1} and s¢ = ¢'

soEG¢ if there is a full path, starting in sy, such that s = ¢ for all
states s on this full path

The verification whether a given formula holds for a certain state is known as model check-

ng.
CTL

Clarke, Emerson, and Sistla [20] presented an efficient model checking algorithm for
formulas, which extends to ACTL without any complications. Assume a finite-state

process graph. The algorithm works by induction on the structure of the given formula, so
one can assume that it is known for each proper subformula of the given ACTL formula in
which states of the input graph it is true.

The three basic boolean operators are straightforward: T holds for all states, —¢ holds
in a state if and only if ¢ does not hold in this state, and ¢ A ¢’ holds in a state if and
only if both ¢ and ¢' hold in this state.

X, ¢ holds in each state that can perform an a-transition resulting in a state where ¢
holds.

To compute the states in which ¢U¢' holds, we start with the states where ¢’ holds,
and then work backwards, using the converse of the transition relation, to find all states
that can be reached by a path in which each state satisfies ¢.

To compute the states in which G ¢ holds, first we eliminate all states from the input
graph where ¢ does not hold. A state satisfies G ¢ if and only if there is a path in the
resulting process graph to a deadlock state, or to a strongly connected component that
contains an infinite path.

Clarke, Emerson, and Sistla showed that their algorithm has worst-case time complexity
O(km), where k is the size of the given ACTL formula and m is the number of transitions
of the input graph. A crucial factor for this nice complexity is that strongly connected
components can be computed in time O(m), using Tarjan’s algoritm [71] (cf. Section 8.1).

Exercise 8.4 Consider the process graph

8.3 Model checking 79

Say for each of the following ACTL formulas in which states of the process graph they are
satisfied:

Finally, for each state in the process graph, give an ACTL formula that is only satisfied by
this state.

Linear temporal logic (LTL) [64] is an alternative temporal logic to express properties of
process graphs that do not carry actions on their transitions. The model-checking algorithm
for LTL [54] is linear in the number of transitions, but exponential in the size of the formula.
From a practical point of view this exponential complexity is not problematic, because in
general the size of a formula is small with respect to the size of the process graph against
which it is checked. CTL is usually referred to as a branching-time temporal logic, because
the construct G ¢ constitutes an explicit quantification over full paths. LTL is referred to as
a linear-time temporal logic, because formulas are interpreted over linear sequences of states.
See [28] for a comparison of branching-time and linear-time temporal logics.

80

Solutions to the exercises

2.1

2.2

2.3

2.4

map

var

rew

map

var
rew

map
var
rew

sort
func

map

var
rew

A, =, < Bool X Bool — Bool

= : Bool — Bool
—: Nat x Nat — Nat

x:Bool
n,m:Nat
rVt=t
rVf=u
-t=f
-f=t
t=>r=x
f=r=t
teor=
feor=-x
0-n=0
n=-0=n

S(n) = S(m)=n-m

>: Nat x Nat — Bool
<: Nat x Nat — Bool
>: Nat X Nat — Bool
n, m:Nat

n>0=t
0>S(n)=f
S(n)>S(m)=n>m
0<S(n)=t
n<0=f

S(n) < S(m)=n<m
S(n)>0=t
0>n=f

S(n) > S(m)=n>m

even : Nat — Bool
m,n:Nat

even(0) =t

even(S(n)) = —even(n)
power(m,0) = S(0)

power(m, S(n)) = mul(power(m,n), m)

Bool, List, D

[] :— List

i : D x List — List
toe : List — D

untoe : List — List
isempty : List — Bool
++ @ List x List — List
d,e:D, q,q :List
toe(in(d, [])) = d

toe(in(d, in(e,q))) = toe(in(e,q))

untoe (in(
untoe (in(
isempty((]) = t
isempty(in(d,q)) =f
+([l,9) =¢

d, 1))
d, in

m

=1

'H_(Zn(da Q)7 ql) = Z’Il(d, H(Qa ql))

e,q))) = m(d, untoe(in(e,q)))

Solutions to the exercises

Solutions to the exercises 81

2.5

2.6

2.7

2.8
(1)

2

®3)

(4)

(5)

(6)

()

(8)

9)

(10)

2.9
1)

2

®)

(4)

var d,e:D
q,q :List
rew eq([],[l) =t

eq(in(d,q),[]) = f

eq([l, in(d, q)) = f

eq(in(d,q), in(e,q")) = eq(d, e) A eq(q,q')
If eq(d,e) = t, then d = if (t,d, e) = if (eq(d,e),d,e) = e.
If d = e, then eq(d,e) = eq(d,d) = t.

tVt=tandfVvt=t.
—aat=-f=tand - ~f=-t=".

fAt="1.

fAf=A.

t=>t=t.

f=t=t

t=>f=f=-t.

f=>f=t=-f

t=y=y="y=y=>f=-y= -t
f:}y:t:—!yitz—!yi—lf.

tet=1t

feot=t="f.

t&t=t.

fef=-f=t

tey=—y="(tey).

f<=>—|y=—|—|y=—|(f<=>y).
(zvVt)eor=teozrz=cz=zVi=zV-t
(zvf)eor=zoz=t=zVt=zV-f

even(plus(m,0)) = even(m) = even(m) < t = even(m) < even(0).
even(plus(m, S(n))) = even(S(plus(m,n))) = —even(plus(m,n)) = —(even(m) < even(n)) = even(m) <
—even(n) = even(m) < even(S(n)).

even(mul(m,0)) = even(0) =t = even(m) V t = even(m) V even(0).

even(mul(m, S(n))) = even(plus(mul(m,n), m)) = even(mul(m,n)) < even(m) = (even(m)Veven(n)) <
even(m) = even(m) V —even(n) = even(m) V even(S(n)).

mul(0,0) =
mul (0, (n)) = plus(mul(0,n),0) = mul(0,n) = 0.

plus(plus(k, £),0) = plus(k‘ £) = plus(k, plus(¢,0)).

plus(plus(k, 0), S(m)) == S(plus(plus(k,€),m)) = S(plus(k, plus(£,m))) = plus(k, S(plus(£, m))) =

plus(k, plus (¢, S(m))).

mul(k, plus(£,0)) = mul(k, £) = plus(mul(k, £),0) = plus(mul(k, £), mul(k, 0)).

mul(k, plus (¢, S(m))) = mul(k, S(plus(€, m))) = plus(mul(k, plus(€,m)), k) = plus(plus(mul(k, £), mul(k, m)), k) =
plus(mul(k, £), plus(mul(k, m), k)) = plus(mul(k, £), mul(k, S(m))).

mul(mul(k, £),0) = 0 = mul(k, 0) = mul(k, mul(¢,0)).

mul(mul(k, £), S(m)) = plus(mul(mul(k, £),m), mul(k, £)) = plus(mul(k, mul(¢, m)), mul(k, £)) = mul(k, plus(mul(£, m), £)
mul (k, mul(¢, S(m))).

82

(5)

2.10

3.4

3.5

3.6

3.7

Solutions to the exercises

mul(power (m, k), power(m,0)) = mul(power(m, k), S(0)) = plus(mul(power(m, k), 0), power(m, k)) =
plus(0, power(m, k)) = power(m, k) = power(m, plus(k,0)).

mul(power (m, k), power(m, S(£))) = mul(power(m, k), mul(power(m, £), m)) = mul(mul(power(m, k), power(m, £)), m) =
mul(power (m, plus(k,£)), m) = power(m, S(plus(k,£))) = power(m, plus(k, S(£))).

++(untoe(q), in(toe(q), q'))-
Base case: ++(untoe(in(d, [])), in(toe(in(d, [])),q')) = ++({l, in(d, ¢')) = in(d,q") = in(d, ++(,4)) =
+(in(d, 1), ')

Inductive case:

++(untoe(in(d, in(e, q))), in(toe(in(d, in(e, q))),)
++(in(d, untoe(in(e, q))), in(toe(in(e,q)),q'))

in(d, ++(untoe(in(e, q)), in(toe(in(e, q)), a')))

in(d, ++(in(e, q),q')) (by induction)
++(in(d, ine, 0)),q).

Suppose [| = in(d,q). Then t = isempty([]) = isempty(in(d, q)) = f, contradicting axiom Booll.

a(d)-(b(stop,f) +¢)
a(d)-b(stop,f) + a(d)-c.

((a+a)(b+b)(c+c) 2 (a(b+b)-(c+c) 2 (ab)(c+c) 2 (ab)c 2 a(bc);
(a+a) (b c)—+— (a b)-(c+c) 22 a-(bc) +(a-b)-(c+e) 2 (a-b)-c+(ab)(c+c) 2 (ab)-(c+c)+(ab)-(ct+c) 2
(ab)-(c+e) Z (a (b+b))-(c+c);
((a+b)-c+a- c) 4 ((a-c+ b-c) +a-c)-d a ((b-c+a-c)+a-c)d 2 (b-c+ (a-c+a-c))-d a2 (b-c+ac)d a
((b+a)-c)d 2 (b+a)(cd).
Suppose p C q and g C p. By definition we have (1) p+ ¢ = q and (2) ¢ + p = p. Thus we obtain:
p = (1 +P p—l— q = (i) q.

The crux of this exercise is to show that A2’ and A3 together prove Al.
s+y 2 @ty)+@+9) 2 g+ @ty +2) L gyt @+ @+o) E (@ro)+9)+y 2 @+ @yto)+y 2
+z)+@y+z) Lyt

CM1

al (b+c) = (a||(b+c)+(b+c)|la)+al|(b+c) (alf(®+c)+(d+c)|la)+(alb+alc) o
(all (b+e)+(b+e) [La)+ (¥ +¢) F (all (b+c)+(b+e) [La)+(blate|a) E* (a] (b+e)+(b+c) [a)+(b+c) |
a2 (b+o)latal(b+c)+B+c)a X b+c)| a

CM1

(b-a) [[a =" ((b-a)| ata] (b:a))+(ba)|a (b-(a || a)+a-(b-a))+(b|a)a
a)+a-(b-a)) + (b a)-a MET (b-((a-a+a-a)+6)+a-(b-a)) + (b]a)-a “Z° (b-(a-a) +a-(b-a)) + (b]a)a 2

CMQ

CM2,3,5 CM1

(b-((a|La+a] a)+a]

5

(b-a+ab)a+ (bla)a 2> (b|la+alb)a+ (Bla)ya™ ((b]la+ald) +bla)a"E" (& a)a.
Oany((@b) || () F' 9wy (((@b) [(b-a) + (b-a) | (a-b)) + (a-b) | (b-a))
LM By (- (b || (b-a)) +b-(a || (@B) + (b || @)
PEY 500y (0 1| (00) + 00y (a || (ab)) + c-Oga sy (b || @)
T (bl a)
U B bllatallb+bla)
MZeF ¢0¢ap}(ba+ab+c)
‘:1?: ¢-(6-0gapy (@) + 6-0pa 5y (b) + €)

Cc-C.

Solutions to the exercises 83

3.8 send(d), read(d) and comm(d) are abbreviated to s(d), r(d) and c(d), respectively, for d € {0,1}, and
H denotes {s(0), s(1),7(0), (1)}

3.9

3.10
3.11
3.12

3.13

3.14

3.15

(s(0) + (1)) || (r(0) +7(1))

CEL (5(0) + (1) [L(r(0) + (1)) + (r(0) + (1)) L (s(0) + 5(1))
+ (5(0) + s(1)) | (r(0) +7(1))
OMAEEMEE T 5(0) L (r(0) + (1)) + s(1) [L (7(0) + (1)) + r(0) [L (5(0) + s(1))
+ (1) L (5(0) + s(1)) + 5(0) | 7(0) + 5(0) | (1) + s(1) | (0)
+s()lr()
CHEEET5(0)(r(0) + (1)) + s(1)(1(0) + (1)) + r(0)(s(0) + (1))
+ r(1)(s(0) + (1)) + c(0) + 6+ + (1)
£ s(0)(r(0) + (1)) + s(1)(r(0) + (1)) + r(0)(s(0) + s(1))
+ 7(1)(s(0) + (1)) + ¢(0) + ¢(1).
Hence,
3x((5(0) + s(1)) || (r(0) + (1))
= 3u(5(0)(r(0) + r(1)) + s(1)(r(0) + r(1)) + r(0)(s(0) + (1))
+ r(1)(s(0) + s(1)) + ¢(0) + ¢(1))
PEY 50m (r(0) 4+ r(1)) + 60u (r(0) + r(1)) + 60w (s(0) + (1))
+ 00 (s(0) + s(1)) + ¢(0) + ¢(1)
A6,7

= ¢(0) +c(1).

Let a and b communicate to c. Then O, ;3 (a || b) can execute ¢, while O, p3(a) || Ofq,p3(b) cannot
execute any action.

S=p+aZ @+ + @+ Fp+o+@+a0) Ep+p+a=p+iEp.

yes; noj; yes; yes; no.

var

proc

(1)

2)

®3)

var
rew

Otticky (Clock(0)) = Oyyicky (tick-Clock(S(0)) + display(0)- Clock(0))
= Oyticky (tick-Clock(S(0))) + Ok} (display(0)- Clock(0))
= 8:0fticky (Clock(S(0))) + display(0)-0sicky (Clock(0))
= display(0)-O(icry (Clock(0)).
n,m:Nat
q: List

Add-list(q:List,n:Nat) = print(n) < eq(q,[]) > add(toe(q))-Add-list(untoe(q), plus(n, toe(q)))

zdtby =z =z+Jd=zqtpdt+y<afrd=x<atrd+y<-trd;
zdfpy=y=0+y=x<fpdt+ydtpd=cafod+y<a-fpod;
rdtVtpd =z<atpd=x4t>d+zat>d;
rdtVipd=z<atpd=zc<trd+d=x<qatpd+z<afpd;
zafVtpd=z<tpd=6+z<tpd=xafrd+zatpd;
zafvVipd=zxz<frd=c<frd+xafpd;

if b =t, then by the assumption (b =t=z =y) we have z =y and so < bb> 2z =y < bb> z;
ifb=f, then x<abpz=2=y 2.
d:D, q:Lust

top(in(d,q)) =d
tail(in(d, q)) = q

84 Solutions to the exercises

proc Stack(q:List) = > ,.p r(d)-Stack(in(d, q)) + (8 <eq(q,[]) > s(top(q))-Stack(tail(q)))
init Stack([])

proc Queuve(q:List) =3, , r(d)-Queue(in(d, q)) + (6 aeq(q, []) > s(toe(q))- Queue(untoe(q)))
init Queue([])

3.16 0< S(S(0)) =t;

3.17 (2) By SUM3

Z rdbpy = Z rdbpytzatoytecafoy= Z rdboy+z+y.

b:Bool b:Bool b:Bool

Sox+yCd g EIbDY.

(©) zatpy=zCzx+yandz<f>py =y Cx+y, so by induction on booleans z y =z Cz +y.
Then by SUM11, SUM4 and SUM1 3, , xy Cx+y.

3.18 (C) By SUM3
Y wab(d)pd = zabd)ps+zable)>s = wab(d)>d+a.
d:D d:D d:D

Sox CY , pxab(d)pd.
(D) If b(d) =t then £ < b(d)>d = z, and if b(d) =f then z<b(d)>d =9 C z, s0 x < b(d) > § C z for all
d:D. Then by SUM11, SUM4 and SUM1), , < b(d)>4 C .

3.19 Let D denote {d1,d2}.

act in, out:D
proc X(n:Nat,m:Nat) = in(d1)-X(S(n), m) + in(d2)-X (n, S(m))

+ (out(d1)-X(n = 1,m)<an > 0p>d) + (out(d2)-X(n,m = 1) <m > 0> 9)
init X(0,0)

3.20
(1) yes: (b+c)-a+ba+caBba+caandalBa;
(2) no;
(3) yes: (a+a)-(b-c)+ (ab)-(c+c)B(a-(b+b))-(c+c), b-cB(b+b)-(c+c), b-(c+c) B(b+b)(c+c), cBc+e,
and c+cBc+ec.

3.22 Base case: a — ./, while aa cannot terminate successfully by the execution of an a-transition.
Hence, a # aa.
Inductive case: a®**' % a” is the only transition of a**', while a*+? % aF*! is the only transition of
a®t2. By induction, a® and a**! cannot be related by a bisimulation relation. Hence, a**! ¢ o**2.

4.1

(1) a(rb+b) 2 a(r(d+b) +b) = a(b +b) 22 ab.

2) a(r(b+c)+b) Zab+c) 2 alc+b) Za(r(c+b)+¢) = a(r(b+c) +0).

(
(3) Teay(ala(d+c) +0)) "= 7(
(

TI1-

7(b+c)+b)=7(r(b+c)+c) = * Tiay (d(d(b + ¢) + ¢)).

4) Haty=uz, then r(re+y) = r(r(e+y) +y) L r(e +y) = ra.

Solutions to the exercises 85

4.2 sort Bool

func T,F: -> Bool

map and,or,eq: Bool # Bool -> Bool
not: Bool -> Bool

var x:Bool

rew and(T,T)=T
and (F,x)=F
and (x,F)=F
or(T,x)=T
or(x,T)=T
or(F,F)=F
not (F)=T
not (T)=F
eq(T,T)=T
eq(F,F)=T
eq(T,F)=F
eq(F,T)=F

sort D

func d1,d2: -> D

map eq: D # D -> Bool

rew eq(d1,d1)=T
eq(d2,d2)=T
eq(d1,d2)=F
eq(d2,d1)=F

act s2,s3,r1,r3,c3:D

comm s3|r3=c3

sum(d:D,r1(d) .s3(d) .Bufl)
sum(d:D,r3(d) .s2(d) .Buf?2)

proc Bufl
Buf2

init hide({c3},encap({s3,r3}, Buf2 || Bufl))
4.3 Buf2 = rename({r1 -> r3, s3 -> s2},Bufl)

4.4 aBiaT, /B 1, and v/ By +/ proves a &, a-T;
aBz7-a, aBza, and \/ Bz y/ proves a &, T-a.
a-TBsT-a, a-t B3 a, T Bz +/, and \/Bs y/ proves a-T &, T-a.

45 7(r-(a+b)+b)+aBa+b, m(a+b)+bBa+b,a+bBa+b,and \/B+/.

4.7 not branching bisimilar; bisimilar; branching bisimilar but not rooted branching bisimilar; rooted
branching bisimilar but not bisimilar; not branching bisimilar.

T1 (dl)
c3(d) /2 (d1)

c3(di) s2(di) s2(da) c3(da) Nl(éb)
82(d2) Sz(dz)

In the following execution trace, di is read before d2 via channel 1, while d2 is sent before d; via channel
2:r (d1) 03(d1) T‘1(d2) 82(d2) Cs(dl) Sz(dl)-

The two shortest execution traces of Oy, (4,)} (t) to a deadlock state are r1(d1) c3(d1) r1(d1) and r1(d2) c3(dz2) r1(d1).

4.8 The node in the middle is the root node.
T1 (dl)
C3(d1)

S92 (dl) T (dl) ™ (d2)

T1 (dg)

86 Solutions to the exercises

T1 (d2)/ Nl (d2)
s2(ds) s2(d2)

The four 7-transitions in the graph above are all silent, as they do not lose possible behaviours; namely,
each 7-transition can be ‘undone’ by its reverse T-transition.

T1 (dl) T1 (dl)
S92 (dl) T1 (dl) T1 (d2) 52 (dl)

Ty (d2)/ s2(di) s2(d2) Nl (d2)
s2(da) s2(d2)

4.9 The node in the middle is the root node.
s3(d1) s3(d2)

T1 (dg) T1 (d2)

C2 (dl)

C2 (d2)

T1 (dl) T1 (dl)

s3(dy) s3(d2)

Data elements are read via channel 1 and sent via channel 3 in the same order.

The two shortest execution traces of 9s4(4,)} (t) to a deadlock state are r1(d1) c2(d1) r1(d1) and r1(d1) c2(d1) r1(da).

r1 (d2) S3 (d1)
T1 (d2) \

T1 (d1) 1 (d1) S3 (d2)

s3(d2)

s3(d1)

T1 (dl)

5.4

k

plusmod(k,0)
plusmod(k, S(£))
ordered(k, £, m)

sucemod (plusmod(k, £))
(k<LAl<m)V(im<kAEL<LHV{E<mAm<Ek)

The algebraic formulation reads ordered (k, £, plusmod(k, m)).

5.6 Let d,d’,d” € A. An error trace is:

(0) r(d) ca(d, 0) j co(d, 0) sn(d) V) ra(d) ca(d, S(0)) jeo(d, S0)) so(d) P ra(d)ca(d,0) j
ca(d, 0) 3) er(S(5(0))) 5 er(S(5(0))) () ra(d”) ca(d”, S(S(0))) j cc(d”, S(S(0))) sp(d”) B) sn(d).

(0): initially, sending and receiving windows are [0, S(0)];

Solutions to the exercises 87

(1): receiving window becomes [S(0), S(S(0))];

(2): receiving window becomes [S(S(0)), 0];

(3): d is erroneously stored in the receiving window;
(4): sending window becomes [S(S(0)), 0];

(5): receiving window becomes [0, S(0)];

5.7 X(first-in:Nat,first-empty:Nat,buffer:Buffer,first-in’:Nat,buffer’:Buffer) =
sum(d:Delta,rA(d) .X(first-in,succmod (first-empty) ,add(d,first-empty,buffer) ,first-in’ ,buffer’)
<| ordered(first-in,first-empty,plusmod(first-in,max-fill)) |> delta)
+ sum(k:Nat,sB(retrieve(k,buffer) ,k) .X(first-in,first-empty,buffer,first-in’,buffer’)
<| test(k,buffer) [> delta)
+ sum(k:Nat,rF (k) .X(k,first-empty,release(first-in,k,buffer) ,first-in’ ,buffer’))
+ sum(d:Delta,sum(k:Nat,rF(d,k). (X(first-in,first-empty,buffer,first-in’,add(d,k,buffer’))
<| ordered(first-in’,k,plusmod(first-in’,max-fill)) |[>
X(first-in,first-empty,buffer,first-in’,buffer’))))
+ sA(retrieve(first-in’ ,buffer’)).
X(first-in,first-empty,buffer,succmod (first-in’) ,remove(first-in’ ,buffer’))
<| test(first-in’,buffer’) |> delta
+ sB(next-empty(first-in’,buffer’)).X(first-in,first-empty,buffer,first-in’,buffer’)

Y(first-in:Nat,first-empty:Nat,buffer:Buffer,first-in’:Nat,buffer’ :Buffer) =
rename ({rA->rD,sA->sD,sB->sE,rF->rC},X(first-in,first-empty,buffer,first-in’ ,buffer’))

K sum(d:Delta,sum(k:Nat,rB(d,k).(j.sC(d,k)+j).K)) + sum(k:Nat,rB(k).(j.sC(k)+j).K)

L

rename ({rB->rE,sC->sF},K)

5.8 X(first-in:Nat,first-empty:Nat,buffer:Buffer,first-in’:Nat,buffer’:Buffer) =
sum(d:Delta,rA(d) .X(first-in,succmod (first-empty) ,add(d,first-empty,buffer) ,first-in’,,buffer’)
<| ordered(first-in,first-empty,plusmod(first-in,max-fill)) |> delta)
+ sum(k:Nat,sB(retrieve (k,buffer) ,k,next-empty(first-in’ ,buffer’)).
X(first-in,first-empty,buffer,first-in’ ,buffer’) <| test(k,buffer) |> delta)
+ sum(d:Delta,sum(k:Nat,sum(1l:Nat,rF(d,k,1).(X(1,first-empty,release(first-in,1,buffer) ,first-in’,add(d,
<| ordered(first-in’,k,plusmod(first-in’,max-fill)) |[>
X(1,first-empty,release(first-in,1,buffer) ,first-in’ ,buffer’)))))
+ sA(retrieve(first-in’ ,buffer’)).
X(first-in,first-empty,buffer,succmod (first-in’) ,remove(first-in’,buffer’))
<| test(first-in’,buffer’) |> delta

5.10 Each 7-transition loses the possibility to execute one of the leader(n)-actions at the end.
5.11 The network is captured by
71(0n (X (no, {n1,n2},0) || X(n1,{no, n2},0) || X(n2,{no,n1},0)))

where H consists of all sends and reads of parent requests, and I of all communications of parent
requests.
No node is allowed to send a parent request.

6.1 The process declaration is captured by Z(t), where
Z(b:Bool) = a-Z(~b) § + c-Z(—b) <« =bp 4.

6.2
Y(ni:Nat, ... ,ng:Nat) =
iy a(f(m:)) Y (n; := g(ni)) < h(ni) b6
+ X5 b(f' ()Y (n = g (ny)) < b/ (ny) > 6
+ 2ijm1 ¢(f (i)Y (ni = f(ni),n; := f'(n;)) <h(ni) Ab (n;) A f(ni) = f'(n;) Ni# oo

88

6.3

6.4

6.5

6.6

6.7

7.2

7.3

8.2

8.3

8.4

Solutions to the exercises

X(na) |l (nz)

= X(m)|[X(n2)+ X(n2) || X(n1) + X(n1)| X (n2)
= (a(m1)X(ni +1)<an; <10>8 +b(n1)-X(n1 +2)<n; >508)| X(n2)
+ (a(n2)X(n2+1)<any <1068 +b(n2)-X(n2 +2)<n2 > 54) || X(n1)
+ (a(n1)-X(n1+1)<an1 <10>5 4+ b(n1)-X(n1 +2)<n1 > 5p9)|

(nz) X(n2+1)<1n2 < 10[>5+b(n2) X(n2+2)<1n2 > 5I>(S)
= am) (X1 +1)]| X(n2))<n1 <1066 + b(n1)(X(n1 +2) || X(n2))<n1 > 5>
4+ a(n2)(X(n) || X(ne +1))<n2 <10>6 + b(n2)-(X(n1) || X(n2 +2))<n2 > 5>
—+ c(nl) (X(nl) || X(n2))<1n1<10/\n2>5/\n1:n21>(5
4+ c(m)(X(n) || X(n2))<n1 >5An1 >10An =na> 4§

We need to prove Z;(n) = Z;(n + 2) for 1 = 1, 2.
If n is even, then Z1(n) = Zi(n+ 2) =t and Zp(n) = Ir(n+ 2) =f.
If n is odd, then Zi(n) = Zi(n+ 2) =f and Io(n) = Zx(n+2) =t
We prove that Z; is an invariant for the LPE X in Definition 6.1; i.e., Z;(d) A h(d, e;) = Z;(g(d, e;)), for
i=1,2.
If i = 1, then we obtain t A h(d, e;) = t, which is true.
If ¢ = 2, then we obtain f A h(d,e;) = f, which is true.
Z(n) =t for n=0,2,4,6,8, and Z(n) = f for all other n.
Z(n) =t for n = 0—6,8, and Z(n) = f for all other n.
FCx(n) is 3m:Nat(n =3mV n=3m+1).
(n) = t ifn=3morn=3m+2
f fn=3m+1
The matching criteria are fulfilled:
-n=3m+2=¢(n)=0¢(n+1) =t
- n=3m = hy($(n)) = ¢(n) =t;
n=3m+ 1= hy(é(n)) = ~¢(n) = ~f =1t
- ((m=3mVn=3m+1)A¢(n)) = n=3m;
(n=3mVn=3m+1)A-¢(n) =>n=3m+1;
- actions do not carry data parameters;
-n=3m=¢(n+1)=";
n=3m+1=>¢(n+1)=t.

If j & p[i] or s[i] =1, then clearly after performing an action still j & p[i] or s[i] = 1, respectively.
Suppose i € p[j], j € p[é] and s[i] = s[j] = 0. Then after executing an action, ¢ ¢ p[j] implies s¢] = 1,
while s[j] = 1 implies j & p[i].
By uniqueness of the root, empty(p[busy(p, s)]) implies s[j] = 1 for j # busy(p, s). Hence,

¢(p, s[busy(p, s)] :=1) = f.

Assume a process graph. For P a set of states, define so € split \/(P) if there exists a sequence
80 = +-- > 8, - 4/ for some n > 0 such that s; € P for i =0,... ,n.

P can be split with respect to \/ if @ C split ,(P) C P.

The maximal confluent sets of the four process graphs are:

both 7-transitions;

0;

both 7-transitions;

0.

s2 and s3; s1 and s3; So, S2, S3, and S4; So, S1, and s3; S1, S2, and s3; s1 and S2.

REFERENCES 89

References

[1]

[2]

3]

[4]

[5]

[6]

[7]

(8]

[9]

[10]

[11]

[12]

P. Abdulla, A. Annichini, and A. Bouajjani. Symbolic verification of lossy channel sys-
tems: application to the bounded retransmission protocol. In W.R. Cleaveland, ed.,
Proceedings 5th Conference on Tools and Algorithms for the Construction and Analy-
sis of Systems (TACAS’99), Amsterdam, The Netherlands, LNCS 1579, pp. 208-222.
Springer-Verlag, 1999.

F. Baader and T. Nipkow. Term Rewriting and All That. Cambridge University Press,
1998.

J.C.M. Baeten and W.P. Weijland. Process Algebra. Cambridge Tracts in Theoretical
Computer Science 18. Cambridge University Press, 1990.

J.W. de Bakker and J.I. Zucker. Processes and the denotational semantics of concurrency.
Information and Control, 54(1/2):70-120, 1982.

H.P. Barendregt. The Lambda Calculus — Its Syntaz and Semantics. Studies in Logic
and the Foundations of Mathematics 103. North-Holland, 1984. Second edition.

K.A. Bartlett, R.A. Scantlebury, and P.T. Wilkinson. A note on reliable full-duplex
transmission over half-duplex links. Communications of the ACM, 12(5):260-261, 1969.

T. Basten. Branching bisimilarity is an equivalence indeed! Information Processing Let-
ters, 58(3):141-147, 1996.

J.A. Bergstra, J. Heering, and P. Klint, editors. Algebraic Specification. ACM Press
Frontier Series. ACM/Addison Wesley, 1989.

J.A. Bergstra and J.W. Klop. Process algebra for synchronous communication. Informa-
tion and Control, 60(1/3):109-137, 1984.

J.A. Bergstra and J.W. Klop. The algebra of recursively defined processes and the algebra
of regular processes. In J. Paredaens, ed., Proceedings 11th Colloguium on Automata,
Languages and Programming (ICALP’8}), Antwerp, Belgium, LNCS 172, pp. 82-95.
Springer-Verlag, 1984.

M.A. Bezem, R.N. Bol, and J.F. Groote. Formalizing process algebraic verifications in
the calculus of constructions. Formal Aspects of Computing, 9(1):1-48, 1997.

M.A. Bezem and J.F. Groote. Invariants in process algebra with data. In B. Jonsson
and J. Parrow, eds, Proceedings 5th Conference on Concurrency Theory (CONCUR’94),
Uppsala, Sweden, LNCS 836, pp. 401-416. Springer-Verlag, 1994.

M.A. Bezem and J.F. Groote. A correctness proof of a one bit sliding window protocol
in uCRL. The Computer Journal, 37(4):289-307, 1994.

M.A. Bezem and A. Ponse. Two finite specifications of a queue. Theoretical Computer
Science, 177(2):487-507, 1997.

90

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

REFERENCES

R.S. Boyer and J.S. Moore. A Computational Logic Handbook. Academic Press, 1988.

Efficient annotated terms M.G.J. van den Brand, H.A. de Jong, P. Klint, and P.A.
Olivier. Efficient annotated terms. Technical Report SEN-R0003, CWI, 2000.

J.J. Brunekreef. Sliding window protocols. In S. Mauw and G.J. Veltink, eds, Algebraic
Specification of Communication Protocols. Cambridge Tracts in Theoretical Computer
Science 36. Cambridge University Press, 1993.

G. Bruns. Distributed Systems Analysis with CCS. Prentice Hall, 1997.

E.M. Clarke and E.A. Emerson. Design and synthesis of synchronization skeletons using
branching time temporal logic. In D. Kozen, ed., Proceedings 8rd Workshop on Logics of
Programs, Yorktown Heights, New York, LNCS 131, pp. 52-71. Springer, 1982.

E.M. Clarke, E.A. Emerson, and A.P. Sistla. Automatic verification of finite-state con-
current systems using temporal logic specifications. ACM Transactions on Programming
Languages and Systems, 8(2):244-263, 1986.

E.M. Clarke, O. Grumberg, and D.A. Peled. Model Checking. MIT Press, 2000.

T.H. Cormen, C.E. Leiserson, and R.L. Rivest. Introduction to Algorithms. MIT Press,
1990.

P.R. D’Argenio, J.-P. Katoen, T.C. Ruys, and J. Tretmans. The bounded retransmission
protocol must be on time! In E. Brinksma, ed., Proceedings 8rd Workshop on Tools and
Algorithms for the Construction and Analysis of Systems (TACAS’97), Enschede, The
Netherlands, LNCS 1217, pp. 416-431. Springer-Verlag, 1997.

H. Davenport. The Higher Arithmetic. Cambridge University Press, 1952.

P.F.G. Dechering and I.A. van Langevelde. The verification of coordination. In A. Porto
and C. Roman, eds, Proceedings 4th Conference on Coordination Models and Languages
(COORDINATION’2000), Limassol, Cyprus, LNCS. Springer-Verlag, To appear.

R. De Nicola and F.W. Vaandrager. Action versus state based logics for transition sys-
tems. In I. Guessarian, ed., Proceedings Spring School on Semantics of Systems of Con-
current Processes, La Roche Posay, France, LNCS 469, pp. 407-419. Springer, 1990.

M.C.A. Devillers, W.0.D. Griffioen, J.M.T. Romijn, and F.W. Vaandrager. Verification
of a leader election protocol — formal methods applied to IEEE 1394. Formal Methods
in System Design, 16(3):307-320, 2000.

E.A. Emerson and C.-L. Lei. Modalities for model checking: branching time logic strikes
back. Science of Computer Programming, 8(3):275-306, 1987.

W.J. Fokkink. Introduction to Process Algebra. Texts in Theoretical Computer Science.
An EATCS Series. Springer-Verlag, 2000.

REFERENCES 91

[30]

[31]

[32]

[33]

[34]

[35]

[39]

[41]

J.-C. Fernandez, H. Garavel, A. Kerbrat, L. Mounier, R. Mateescu, and M. Sighire-
anu. CADP - a protocol validation and verification toolbox. In R. Alur and T.A. Hen-
zinger, eds, Proceedings 8th Conference on Computer-Aided Verification (CAV’96), New
Brunswick, New Jersey, LNCS 1102, pp. 437-440. Springer-Verlag, 1996.

L.-a. Fredlund, J.F. Groote, and H.P. Korver. Formal verification of a leader election
protocol in process algebra. Theoretical Computer Science, 177(2):459-486, 1997.

R.J. van Glabbeek and W.P. Weijland. Branching time and abstraction in bisimulation
semantics. Journal of the ACM, 43(3):555-600, 1996.

M.J.C. Gordon and T.F. Melham, editors. Introduction to HOL: a Theorem Proving
Environment for Higher Order Logic. Cambridge University Press, 1993.

J.F. Groote. Process Algebra and Structured Operational Semantics. PhD thesis, Univer-
sity of Amsterdam, 1991.

J.F. Groote and H.P. Korver. Correctness proof of the bakery protocol in yCRL. In A.
Ponse, C. Verhoef, and S.F.M. van Vlijmen, eds, Algebra of Communicating Processes
(ACP’94), Utrecht, The Netherlands, Workshops in Computing, pp. 63-86. Springer-
Verlag, 1995.

J.F. Groote and I.A. van Langevelde. The SVC file format. Technical Report, CWI,
2000. To appear.

J.F. Groote, F. Monin, and J.C. van de Pol. Checking verifications of protocols and
distributed systems by computer. In D. Sangiorgi and R. de Simone, eds, Proceedings
9th Conference on Concurrency Theory (CONCUR’98), Sophia Antipolis, France, LNCS
1466, pp. 629-655. Springer, 1998.

J.F. Groote and J.C. van de Pol. A bounded retransmission protocol for large data
packets: a case study in computer checked verification. In M. Wirsing and M. Ni-
vat, eds, Proceedings 5th Conference on Algebraic Methodology and Software Technology
(AMAST’96), Munich, Germany, LNCS 1101, pp. 536-550. Springer, 1996.

J.F. Groote and J.C. van de Pol. State space reduction using partial 7-confluence. In M.
Nielsen and B. Rovan, eds, Proceedings 25th Symposium on Mathematical Foundations of
Computer Science (MFCS’2000), Bratislava, Slovakia, LNCS 1893, pp. ????. Springer-
Verlag, 2000.

J.F. Groote and A. Ponse. Proof theory for yCRL: a language for processes with data.
In D.J. Andrews, J.F. Groote, and C.A. Middelburg, eds, Proceedings of the Interna-
tional Workshop on Semantics of Specification Languages, Utrecht, The Netherlands,
Workshops in Computing, pp. 231-250. Springer-Verlag, 1993.

J.F. Groote and A. Ponse. The syntax and semantics of ygCRL. In A. Ponse, C. Verhoef,
and S.F.M. van Vlijmen, eds, Algebra of Communicating Processes (ACP’94), Utrecht,
The Netherlands, Workshops in Computing, pp. 26-62. Springer-Verlag, 1995.

92

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

REFERENCES

J.F. Groote, A. Ponse, and Y.S. Usenko. Linearization of parallel pCRL. Technical Re-
port SEN-R0019, CWI, 2000.

J.F. Groote and J. Springintveld. Focus points and convergent process operators: a proof
strategy for protocol verification. In A. Arnold, ed., Models and Proofs, Proceedings
AMAST Workshop on Real-Time Systems and Operation Inter-PRC, Bordeaux, France,
1995.

J.F. Groote and F.W. Vaandrager. An efficient algorithm for branching bisimulation
and stuttering equivalence. In M.S. Paterson, ed., Proceedings 17th Colloguium on Au-
tomata, Languages and Programming (ICALP’90), Warwick, UK, LNCS 443, pp. 626
638. Springer-Verlag, 1990.

J.F. Groote and J.J. van Wamel. The parallel composition of uniform processes with
data. To appear in Theoretical Computer Science.

L. Helmink, M.P.A. Sellink, and F.W. Vaandrager. Proof-checking a data link protocol.
In H.P. Barendregt and T. Nipkow, eds, Selected Papers 1st Workshop on Types for
Proofs and Programs (TYPES’93), Nijmegen, The Netherlands, LNCS 806, pp. 127-
165. Springer-Verlag, 1994.

C.A.R. Hoare. Communicating sequential processes. Communications of the ACM,
21(8):666—677, 1978.

C.A.R. Hoare. Communicating Sequential Processes. Prentice Hall, 1985.

IEEE Computer Society. IEEE Standard for a High Performance Serial Bus. Std. 1394-
1995, August 1996.

P.C. Kanellakis and S.A. Smolka. CCS expressions, finite state processes, and three
problems of equivalence. Information and Computation, 86(1):43-68, 1990.

H.P. Korver. Protocol Verification in pCRL. PhD Thesis, University of Amsterdam,
1994.

H.P. Korver and M.P.A. Sellink. Example verifications using alphabet axioms. Formal
Aspects of Computing, 10(1):43-58, 1998.

H.P. Korver and J. Springintveld. A computer-checked verification of Milner’s scheduler.
In M. Hagiya and J.C. Mitchell, eds, Proceedings 2nd Symposium on Theoretical Aspects
of Computer Software (TACS’94), Sendai, Japan, LNCS 789, pp. 161-178. Springer-
Verlag, 1994.

O. Lichtenstein and A. Pnueli. Checking that finite state concurrent programs satisfy
their linear specification. In Conference Record 12th ACM Symposium on Principles of
Programming Languages (POPL’85), New Orleans, Louisiana, pp. 97-107. ACM, 1985.

J. Loeckx, H.-D. Ehrich, and M. Wolf. Specification of Abstract Data Types. Wi-
ley /Teubner, 1996.

REFERENCES 93

[56]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

S.P. Luttik. Description and formal specification of the link layer of P1394. In 1. Lovrek,
ed., Proceedings 2nd Workshop on Applied Formal Methods in System Design, Zagreb,
Croatia, 1997.

R. Milner. A Calculus of Communicating Systems. LNCS 92, Springer-Verlag, 1980.

R. Milner. Calculi for synchrony and asynchrony. Theoretical Computer Science,
25(3):267-310, 1983.

R. Milner. Communication and Concurrency. Prentice Hall, 1989.

S. Owre, J.M. Rushby, and N. Shankar. PVS: a Prototype Verification System. In D.
Kapur, ed., Proceedings 11th Conference on Automated Deduction (CADE’92), Saratoga
Springs, New York, LNCS 607, pp- 748-752. Springer-Verlag, 1992.

R. Paige and R.E. Tarjan. Three partition refinement algorithms. SIAM Journal on
Computing, 16(6):973-989, 1987.

D.M.R. Park. Concurrency and automata on infinite sequences. In P. Deussen, ed.,
Proceedings 5th GI (Gesellschaft fir Informatik) Conference, Karlsruhe, Germany, LNCS
104, pp. 167-183. Springer-Verlag, 1981.

L.C. Paulson. Isabelle: the next seven hundred theorem provers. In E. Lusk and R. Over-
beek, eds, Proceedings 9th Conference on Automated Deduction (CADE’88), Argonne,
LNCS 310, pp. 772-773. Springer-Verlag, 1988.

A. Pnueli. The temporal logic of programs. In Proceedings 18th IEEE Symposium on
Foundations of Computer Science (FOCS’77), Providence, Rhode Island, pp. 46-57.
IEEE Computer Society Press, 1977.

J.M.T. Romijn. A timed verification of the IEEE 1394 leader election protocol. In S.
Guesi and D. Latella, eds, Proceedings 4th Workshop on Formal Methods for Industrial
Critical Systems (FMICS’99), Trento, Italy, pp. 3-29. Full version to appear in Formal
Methods in System Design.

A.W. Roscoe. The Theory and Practice of Concurrency. Prentice Hall, 1998.

C. Shankland and M.B. van der Zwaag. The tree identify protocol of IEEE 1394 in
pCRL. Formal Aspects of Computing, 10(5/6):509-531, 1998.

M. Sighireanu and R. Mateescu. Verification of the link layer protocol of the IEEE-1394
serial bus (FireWire): an experiment with E-LOTOS. Software Tools for Technology
Transfer, 2(1):68-88, 1998.

M.L.A. Stoelinga and F.W. Vaandrager. Root contention in IEEE 1394. In J.-P. Ka-
toen, ed., Proceedings 5th AMAST Workshop on Real-Time and Probabilistic Systems
(ARTS’99), Bamberg, Germany, LNCS 1601, pp. 53—-74. Springer-Verlag, 1999.

A.S. Tanenbaum. Computer Networks. Prentice Hall, 1981.

94 REFERENCES

[71] R.E. Tarjan. Depth first search and linear graph algorithms. SIAM Journal on Comput-
ing, 1(2):146-160, 1972.

[72] J.J. van Wamel. Verification Techniques for Elementary Data Types and Retransmission
Protocols. PhD thesis, University of Amsterdam, 1995.

[73] A. Wouters. Manual for the uCRL toolset. Technical Report, CWI, 2000. To appear.

