Competition on the configuration model with infinite variance degrees

Júlia Komjáthy
joint with Enrico Baroni and Remco van der Hofstad

Eindhoven University of Technology
Dept. of Computer Science and Mathematics
Stochastics Section

January 8, 2015
Complex networks are large data-sets without obvious structure
Complex networks are large data-sets without obvious structure

- elements are represented by *vertices*
Networks

Complex networks are large data-sets without obvious structure

- elements are represented by *vertices*
- their relationship/interaction are represented by *edges*
Complex networks are large data-sets without obvious structure

- elements are represented by *vertices*
- their relationship/interaction are represented by *edges*
- additional information can be added to vertices and edges
IP level internet network, 2003
from the OPTE project, opte.org
Some examples

- **Marketing:**
 - companies compete for customers
 - word-of-mouth recommendations on the acquaintance network
 - ‘online’ word-of-mouth: tweets, Facebook posts, etc.
Information spread and competition on networks

Some examples

- Marketing:
 - companies compete for customers
 - word-of-mouth recommendations on the acquaintance network
 - ‘online’ word-of-mouth: tweets, Facebook posts, etc.

- Epidemiology:
 - bacteria and viruses spread among population
 - different strains of a pathogen compete
Information spread and competition on networks

Some examples

- **Marketing:**
 - companies compete for customers
 - word-of-mouth recommendations on the acquaintance network
 - ‘online’ word-of-mouth: tweets, Facebook posts, etc.

- **Epidemiology:**
 - bacteria and viruses spread among population
 - different strains of a pathogen compete

Coexistence?

Can competitive spreading processes coexist on the network?
Can they both get linear proportion of the vertices?
Building a network: the configuration model

\[v_1, v_2, v_3, v_4, v_5, v_6, v_7, v_8 \]
Building a network: the configuration model
Degree assumptions

Degrees are i.i.d. copies of D, $P(D \geq 2) = 1$ and
Degrees are i.i.d. copies of D, $\mathbb{P}(D \geq 2) = 1$ and

Power law assumption

For $\tau \in (2, 3)$,

$$\frac{c_1}{x^{\tau-1}} \leq \mathbb{P}(D > x) \leq \frac{C_1}{x^{\tau-1}}$$
Degree assumptions

Degrees are i.i.d. copies of D, $P(D \geq 2) = 1$ and

Power law assumption

For $\tau \in (2, 3)$,

$$\frac{c_1}{x^{\tau-1}} \leq P(D > x) \leq \frac{C_1}{x^{\tau-1}}$$

This means, $E[D] < \infty$, but $E[D^2] = \infty$!
Competition starts!
Competition starts!

\[t = 0 \]

\[v_1 \]
\[v_2 \]
\[v_3 \]
\[v_4 \]
\[v_5 \]
\[v_6 \]
\[v_7 \]
\[v_8 \]
Competition starts!

\[t = 1 \]

\[
\begin{align*}
v_1 & \quad \quad v_2 \\
v_3 & \quad \quad v_4 \\
v_5 & \quad \quad v_6 \\
v_7 & \\
v_8 &
\end{align*}
\]
Competition starts!

\[t = 2 \]

\[v_1 \rightarrow v_2 \rightarrow v_3 \rightarrow v_4 \rightarrow v_5 \rightarrow v_7 \]

\[v_8 \rightarrow v_1 \]

\[v_6 \rightarrow v_5 \rightarrow v_7 \]

Júlia Komjáthy (TU/e)
Competition starts!

\[t = 3 \]

Graph with vertices labeled as follows:
- \(v_1 \)
- \(v_2 \)
- \(v_3 \)
- \(v_4 \)
- \(v_5 \)
- \(v_6 \)
- \(v_7 \)
- \(v_8 \)
Competition starts!

\[t = 4 - \varepsilon \]
Competition starts!

\[t = 4 \]

vertices

\[v_1, v_2, v_3, v_4, v_5, v_6, v_7, v_8 \]
Competition starts!

\[t = 4 \]

\[v_1, v_2, v_3, v_4, v_5, v_8, v_7, v_6, v_3 \]
Different speeds: no coexistence

- Red gets $n - o(n)$ many vertices.
Different speeds: no coexistence

- Red gets $n - o(n)$ many vertices.

Theorem (Baroni, v/d Hofstad, K), heuristic statement

$$\text{number of Blue nodes} \approx \exp \left\{ (\log n) \frac{2}{\lambda + 1} \cdot \xi_n \right\}$$ (1)
Different speeds: no coexistence

- Red gets $n - o(n)$ many vertices.

Theorem (Baroni, v/d Hofstad, K), heuristic statement

\[
\text{number of Blue nodes} \approx \exp \left\{ (\log n) \frac{2}{\lambda + 1} \cdot \xi_n \right\}
\]

(1)

- ξ_n an oscillating, positive function of n,

Júlia Komjáthy (TU/e)
Different speeds: no coexistence

- Red gets $n - o(n)$ many vertices.

Theorem (Baroni, v/d Hofstad, K), heuristic statement

\[
\text{number of Blue nodes} \approx \exp \left\{ (\log n) \frac{2}{\lambda + 1} \cdot \xi_n \right\}
\]

- ξ_n an oscillating, positive function of n,
- depends also on how ‘good’ the starting positions are.
Different speeds: no coexistence

- Red gets $n - o(n)$ many vertices.

Theorem (Baroni, v/d Hofstad, K), heuristic statement

\[
\text{number of Blue nodes } \approx \exp \left\{ (\log n) \frac{2}{\lambda + 1} \cdot \xi_n \right\} \tag{1}
\]

- ξ_n an oscillating, positive function of n,
- depends also on how ‘good’ the starting positions are.

No coexistence when the speeds differ.
Equal speeds: no coexistence with dissimilar neighbourhoods

If one of the starting neighbourhoods is ‘much better’ than the other (say red), then
Equal speeds: no coexistence with dissimilar neighbourhoods

If one of the starting neighbourhoods is ‘much better’ than the other (say red), then

- red paints \(n - o(n) \) vertices, and
Equal speeds: no coexistence with dissimilar neighbourhoods

If one of the starting neighbourhoods is ‘much better’ than the other (say red), then

- red paints $n - o(n)$ vertices, and

Theorem (v/d Hofstad, K), heuristic statement

\[
\text{number of Blue vertices} \approx n^{\xi_n} \tag{2}
\]
Equal speeds: no coexistence with dissimilar neighbourhoods

If one of the starting neighbourhoods is ‘much better’ than the other (say red), then

- red paints $n - o(n)$ vertices, and

Theorem (v/d Hofstad, K), heuristic statement

\[
\text{number of Blue vertices} \approx n^{\xi_n} \quad (2)
\]

- $\xi_n < 1$ is an oscillating, positive function of n,
Equal speeds: no coexistence with dissimilar neighbourhoods

If one of the starting neighbourhoods is ‘much better’ than the other (say red), then

- red paints $n - o(n)$ vertices, and

Theorem (v/d Hofstad, K), heuristic statement

$$\text{number of Blue vertices} \approx n^{\xi_n} \quad (2)$$

- $\xi_n < 1$ is an oscillating, positive function of n,
- depends on how ‘different’ the starting positions are.
Equal speeds: coexistence with similar neighbourhoods

\(Y_r^{(n)}, Y_b^{(n)} \) are random variables that quantitatively describe how good the starting neighbourhoods are.
Equal speeds: coexistence with similar neighbourhoods

$Y_r^{(n)}, Y_b^{(n)}$ are random variables that quantitatively describe how good the starting neighbourhoods are.

Theorem (v/d Hofstad, K)

If $q := Y_r^{(n)}/Y_b^{(n)} \in (\tau - 2, (\tau - 2)^{-1})$, then there is coexistence.
Thank you for the attention!
Thank you for the attention!
Thank you for the attention!

\[t = k^* + 1 \]

\[n^{1/(\tau-1)} \]

\[u_0 \quad u_1 \quad u_2 \quad u_3 \quad u_4 \quad u_5 \]

\[n^{\tau-2} \quad n^{\tau-1} \]

Júlia Komjáthy (TU/e)
Thank you for the attention!

\[t = k^* + 2 \]

\[n^{1/(\tau-1)} \]
Thank you for the attention!
Thank you for the attention!

$t = k^* + 4$

$n^{1/(\tau-1)}$

u_0

u_1

u_2

u_3

u_4

u_5

$\frac{\tau-2}{\tau-1}$

$\frac{\tau-1}{\tau-1}$

u_0

u_1

u_2

u_3

u_4

u_5
Thank you for the attention!
Thank you for the attention!

\[t = T_r + 1 \]

\[n^{1/(\tau-1)} \]
Thank you for the attention!

\[t = T_r + 2 \]

\[n^{1/(\tau - 1)} \]

\[u_0, u_1, u_2, u_3, u_4, u_5 \]

\[n^{\tau - 2}/n^{\tau - 1} \]
Thank you for the attention!
Thank you for the attention!
Thank you for the attention!

\[t = T_r + 5 \]

\[n^{1/(\tau - 1)} \]

\[u_0, u_1, u_2, u_3, u_4, u_5 \]

\[n^{\frac{\tau - 2}{\tau - 1}} \]

Júlia Komjáthy (TU/e)
Thank you for the attention!