Networking Lab Assignment

Boris Cobelens, Johan Lukkien

April 2003

1. Introduction

This document describes the lab assignment for the Networking course of 2003. The goal of the assignment is to give you some practical insight and experience in the implementation of networking protocols and applications.

You are likely to be familiar with Instant Messaging systems such as ICQ and MSN Messenger. ICQ makes it possible to talk, send offline messages, and exchange files through the Internet. The assignment of this course is to create a very simple equivalent of ICQ for small LANs. It must offer functionality for sending messages to other people, even if they are offline.

The system exists of a server application and a client application. Only one server is needed, whereas the client application can of course run on multiple hosts. Using the client, a user can login at the server and be available for chatting. He can send messages to another user by specifying a name. When this user is offline, the server must keep the messages until the user is online again.

Note that the server is in fact superfluous when two users are online at the same time. For privacy considerations it must be possible for clients to bypass the server and have direct communication. Figure 1 illustrates a setup with thee communicating clients where client 1 and 3 are communicating directly and client 1 and 2 are communicating through the server.

[image: image1.wmf]client 1

server

client 3

client 2

2. Assignments

2.1. Assignment 1

You are to write a client and server that implement the protocol described in section 3. Any implementation that meets the protocol description is valid. It is up to you to decide which programming language you will use, what kind of user interface you will create, and what kind of platform it will run on. You can choose between C, C++ and Java running on Windows or Linux. You may choose to create some fancy user interface, but a simple command line system will do as well. As long as your applications follow the rules of the protocol, it doesn’t matter. You are encouraged to test your implementation with that of other; implementations that meet the protocol specification should interoperate properly.

2.2. Assignment 2

The described protocol requires a server with a known IP address. When a server is not available, for whatever reason, the system does not work anymore. The main goal of this second assignment is to extend the protocol for serverless setups, making the system work when no server is available or when an active server disappears from the network.

You must also make the server discoverable by clients, and when the server starts up it must announce its presence to all clients. Finally, change the way clients log on and off. They should log on and off in a way all other clients can notice it, instead of only the server.

You may introduce additional packet types to extend the protocol if you feel the need to do so. Do not modify the default packet types, as this violates the first assignment. Try to come up with a clever idea to handle things in the absence of a server.

3. Protocol

3.1. Server

The server's task is to administer and manage the chat network, keeping track of clients and messages. It listens to port 1337 using an UDP socket. Clients can login at the server by sending an empty message. Every time a server receives a packet of type 1 with a zero-length message, the sender must be registered as online. A timestamp of the login must be stored. If the client is already registered, the packet must be considered as a “keep-alive signal”. Clients that have not sent any packets to the server for over 60 seconds will loose their connection. To log off explicitly they can send a packet of type 2 at any time.

In case of packets matching a registered IP address, but not matching registered user information, the packets are ignored. This means that a client on a specific IP address cannot suddenly switch to another user. It first needs to log off or wait until the registration at the server times out.

When the server receives a non-zero packet of type 1, it must forward the packet if the destination is online. If the destination is offline, the message must be stored at the server. It must be forwarded as soon as the destination client is registered, or in other words: online. There is no feedback to the client. If the server cannot store an undeliverable message it is just discarded.

There are two types of queries that clients can send to the server. The first is a request for a list of online clients and the second is a request for information on a specific client. See packet types 3, 4, 5 and 6. If information on a non-existent user is requested, an empty reply must be returned.

3.2. Client

The clients communicate with the server to send and receive messages from other clients. Once a client knows the IP address of another client it can set up a direct connection for a chat. Of course the client application also presents a user interface to the user. For receiving requests from other clients it is required that each client listens to port 1337.

When a client starts it can ask the server for a list of logged on users. When a specific user is selected, the client can send messages to that user by sending packets of type 1 to the server. Alternatively, it can ask for the IP address of the client to make a direct connection. The server keeps registrations of idle clients for 60 seconds. This means that a client must send keep-alive messages with a maximum delay of 60 seconds when idle.

When the client terminates or switches to a different user, it must log off first using packet type 2. This does not only count for the server registration but also for direct connections with other clients. A chat session can then be closed when a chat partner leaves.

Clients can send two types of queries to servers: a request for a list of logged on users and a request for information on a specific user. If a request for information is answered with an ‘all-zero’ packet of type 6, the user does not exist.

3.3. Packet formats

The packet format is based on UDP/IPv4/Ethernet networking. The maximum packet size, which is 1400, is kept below the MTU of Ethernet including al header information. With the second assignment this makes things easier for you. Explain why in your documentation.

The packet diagrams are simple. The first byte indicates the function of the packet and for each packet the field lengths are given in bytes. Packet sizes must be kept below 1400. If there are many users with long names you might not be able to put a complete list in a type 4 packet. If data does not fit into a packet, simply truncate it.

Finally, don't forget about byte ordering in network data.

1. Send message, login, keep alive

[image: image2.wmf]1

NLEN

NAME

MLEN

MESSAGE

1

2

NLEN

2

MLEN

NLEN - length of NAME

NAME - destination of the message, or in case of login/keep-alive the name of the sender

MLEN - length of MESSAGE, which is zero in case of login/keep-alive

MESSAGE - message

2. Log off
[image: image3.wmf]2

NLEN

NAME

1

2

NLEN

NLEN - length of NAME

NAME - name of the sender that wants to log off

3. Request list of users

[image: image4.wmf]3

1

4. List of users

[image: image5.wmf]4

NR

NLEN1

NAME1

NLEN2

NAME2

…

1

2

NLEN1

2

NLEN2

2

NR - number of names on the list

NLEN1 - length of NAME1

NAME1 - first name on list

NLEN2 - length of NAME2

NAME2 - second name on list

…

5. Request user info

[image: image6.wmf]5

NLEN

NAME

1

2

NLEN

NLEN - length of NAME

NAME - name of the requested user

6. User info

[image: image7.wmf]6

NLEN

NAME

IPADDR

LTIME

1

2

NLEN

4

4

NLEN - length of NAME

NAME - name of the requested user

IPADDR - IPv4 address of the user's client host

LTIME - timestamp of login
4. Additional information, grading
You work in couples. It is fine to discuss things with other participants, as long as you don’t exchange any source code. It’s good to get a few hints when you run into trouble, but no more than that.

Read the assignments carefully before asking any questions. If you really think something is wrong or unclear, feel free to contact us. However, do not expect us to help you out implementing the protocol.

You have to wrote a report on your work. Grading will address a few points.
· The protocol must be implemented correctly.
· Discuss the choices in assignment 2 and present your solution clearly.
· You can regard part of your solutions as a layer, built on top of UDP, communicating with the same layer on a peer. Discuss and define the provided service and the protocol, where you use the definitions in the slides. In the definition of the protocol it is good to recognize the different states.
· Clean source code please.

· Document on paper. NO EMAIL ACCEPTED.
Figure 1. Server-based and direct communication

PAGE
3

