
OSAS
An Open Service Architecture for

Sensors

Johan Lukkien

Richard Verhoeven

Remi Bosman

Framework

• A framework consists (possibly)
of

– a ‘static’ part

• programming model, data model

– libraries

• life cycle model

• methods or tooling for development

• A framework has views, e.g.,

– logical view for the framework
user (application developer)

• programming model

• visible services

‒ development view for the
framework developer, programmer

Johan J. Lukkien, j.j.lukkien@tue.nl
TU/e Computer Science, System Architecture and Networking

• methods or tooling for development

– a ‘dynamic’ part

• a run-time system, or platform

– entirely separate entity or a library

• a set of services

– provided by the platform

– e.g. binding, installation

• a process model

Tuesday, September 28, 2010 2

• the logical organization of the
framework tools and platform

• the services structure

• the code

‒ process view for developer and
framework installer

• the processes in the framework,
the connection to the OS, the
protocols

‒ deployment view

Contents

• Introduction to the design problem
– system operation sketch, goal
– stakeholders
– technical environment
– operational environment
– constraints

Johan J. Lukkien, j.j.lukkien@tue.nl
TU/e Computer Science, System Architecture and Networking

Tuesday, September 28, 2010 3

• Analysis

• Design decisions

• Reflection on concepts

• Conclusion

System outline

• The system consists of
– clusters of wireless sensors

• sensing, (actuating), computing, communicating

• cheap, small, mobile, unreliable (communication), low on resources,
many

• mobile (wearing) and ambient deployment

– infra structure, bridge-ing and backend-machines

Johan J. Lukkien, j.j.lukkien@tue.nl
TU/e Computer Science, System Architecture and Networking

Tuesday, September 28, 2010 4

– infra structure, bridge-ing and backend-machines

• The goal:

– develop a programming framework for sensor networks

• specify sensor behavior, and computations

• adjust sensor behavior

• integrate in infrastructure

• ‘convenient’ deployment (impossible to physically contact each sensor)

Elderly care: person moving between different locations

802.11 (WLAN)
802.16e
(WiMAX)

UMTS GPRS

Johan J. Lukkien, j.j.lukkien@tue.nl
TU/e Computer Science, System Architecture and Networking

Tuesday, September 28, 2010 5

BSN

Herd control: monitoring animals in the field

Johan J. Lukkien, j.j.lukkien@tue.nl
TU/e Computer Science, System Architecture and Networking

Tuesday, September 28, 2010 6

General architecture
Physical organization

802.11 (WLAN)802.16e (WiMAX)

UMTS, GPRS

WSN infrastructure:
static ambient nodes

IP-based (cellular)
network with wide-
area coverage

Johan J. Lukkien, j.j.lukkien@tue.nl
TU/e Computer Science, System Architecture and Networking

Tuesday, September 28, 2010 7

MSN

MSN

MSN

MSN

MSN

ASN
ASN

ASN

MSN = mobile sensor network
ASN = ambient sensor network

Moving clusters of
nodes with rich sensing
capability but with
limited resources

e.g. single person
moving around

static ambient nodes
using the same
communication
technology as lowest
layer

Taxonomy

Middle layer

Bottom layer

Multi hop

(ambient infra structure)

Single hop (no hop)

(access points)

Multi hop Most general case:
moving clusters through

Moving clusters
connecting to access

Johan J. Lukkien, j.j.lukkien@tue.nl
TU/e Computer Science, System Architecture and Networking

Tuesday, September 28, 2010 8

moving clusters through
ambient infra structure

connecting to access
points

Single hop Moving nodes
connecting to ambient
infra structure

Moving nodes
connecting to access
points

System outline

• The system consists of
– clusters of wireless sensors

• sensing, (actuating), computing, communicating

• cheap, small, mobile, unreliable (communication), low on resources,
many

• mobile (wearing) and ambient deployment

– infra structure, bridge-ing and backend-machines

Johan J. Lukkien, j.j.lukkien@tue.nl
TU/e Computer Science, System Architecture and Networking

Tuesday, September 28, 2010 9

– infra structure, bridge-ing and backend-machines

• The goal:

– develop a programming framework for sensor networks

• specify sensor behavior, and computations

• adjust sensor behavior

• integrate in infrastructure

• ‘convenient’ deployment (impossible to physically contact each sensor)

Stakeholders

• Users (farmers, doctors)
– buying and deploying sensors
– configuring sensor systems
– note: the person that wears the sensors is not considered as

stakeholder here

• Application builders
– programmers, programming sensor systems

Johan J. Lukkien, j.j.lukkien@tue.nl
TU/e Computer Science, System Architecture and Networking

Tuesday, September 28, 2010 10

– programmers, programming sensor systems
– putting systems together

• Integrators
– integration of new hardware
– developing and integrating system software

Scenario of running system
First visit - configuration

gateway

SpO2

Johan J. Lukkien, j.j.lukkien@tue.nl
TU/e Computer Science, System Architecture and Networking

Tuesday, September 28, 2010 11

gateway

Motion

Heart rate

Collect all sensors
every 15 minutes

Running system
After visit - running

SpO2

gateway

Johan J. Lukkien, j.j.lukkien@tue.nl
TU/e Computer Science, System Architecture and Networking

Tuesday, September 28, 2010 12

Motion

Heart rate

Sensor data
collected

gateway

Running system
Next ‘visit’ - analysis

gateway

SpO2

Something is
wrong with the
SpO2 levels!!!

Johan J. Lukkien, j.j.lukkien@tue.nl
TU/e Computer Science, System Architecture and Networking

Tuesday, September 28, 2010 13

gateway

Motion

Heart rate

Retrieve data

Running system
Next ‘visit’ – change configuration

gateway

SpO2

Johan J. Lukkien, j.j.lukkien@tue.nl
TU/e Computer Science, System Architecture and Networking

Tuesday, September 28, 2010 14

gateway

Motion

Heart rate

Collect SpO2 sensor
every 2 minutes

Running system
Next ‘visit’ – set an alarm

gateway

SpO2

Johan J. Lukkien, j.j.lukkien@tue.nl
TU/e Computer Science, System Architecture and Networking

Tuesday, September 28, 2010 15

gateway

Motion

Heart rate

Raise alarm when SpO2

reading below 25
Notify within 1 minute

Running system
After ‘visit’ – running

gateway

SpO2

Johan J. Lukkien, j.j.lukkien@tue.nl
TU/e Computer Science, System Architecture and Networking

Tuesday, September 28, 2010 16

gateway

Motion

Heart rate

Retrieve SpO2 data
Stream SpO2 sensor
every minute

Building blocks & constraints

• Physically: mentioned devices
– several kilobytes of flash, 2-10kB of RAM, slow clock
– small batteries, small range radio
– error-prone wireless communication

• Software (explained later):
– on nodes:

Johan J. Lukkien, j.j.lukkien@tue.nl
TU/e Computer Science, System Architecture and Networking

Tuesday, September 28, 2010 17

– on nodes:
• Operating System, providing system calls

– basic OS functionality, but little protection
– sensor / actuator access

• Network stack
• to-be-developed components, using a language of choice (typically C)

– in the infra structure:
• standard platform (e.g. Windows)
• to-be-developed components, using a language of choice

Extra-functional properties

• Energy constraints
– operational for months on small batteries

• Long time, no touch

• Programmer productivity

Johan J. Lukkien, j.j.lukkien@tue.nl
TU/e Computer Science, System Architecture and Networking

Tuesday, September 28, 2010 18

• Portability, limit platform dependence

• (Security, privacy)

Technical environment

• For our design we used:
– Mantis OS, with a simple link layer protocol in the sensors

– C as programming language

– both Linux and Windows platforms in the back-end systems

– Python, on Linux and Windows

– A Compiler-Compiler

Johan J. Lukkien, j.j.lukkien@tue.nl
TU/e Computer Science, System Architecture and Networking

Tuesday, September 28, 2010 19

• Note:
– these are not always given constraints but choices resulting from

research

– it is debatable to what extent such choices influence the
architecture. However:

The concepts that someone works with determine

the way of thinking about a problem and the choice of solutions

Use cases

• Use case of a doctor (see previously)

• Programmer:
– programming model

– workflow of writing, deploying and debugging programs for entire
networks

Johan J. Lukkien, j.j.lukkien@tue.nl
TU/e Computer Science, System Architecture and Networking

Tuesday, September 28, 2010 20

networks

• specifying behavior and computations of entire system

– special issues:

• very limited feedback possibilities from sensors

Contents

• Introduction to the design problem

• Analysis

• Design decisions

Johan J. Lukkien, j.j.lukkien@tue.nl
TU/e Computer Science, System Architecture and Networking

Tuesday, September 28, 2010 21

• Reflection on concepts

• Conclusion

Assumptions about node software environment

• Common assumptions, for systems more powerful than e.g. PDAs
– POSIX OS, supporting regular OS services

• process, thread management
• file, memory and other resource management
• i/o

– TCP/IP protocol stack

• Sensor node capacities are so small that
– no superfluous functionality should be supported

Johan J. Lukkien, j.j.lukkien@tue.nl
TU/e Computer Science, System Architecture and Networking

Tuesday, September 28, 2010 22

– no superfluous functionality should be supported
– in fact, the running of an application should be fully optimized
– typically this is done by cross-layer optimization

• breaking the conceptual layering, by using information at different layers to
obtain global optimization

– e.g. application-dependent use of the wireless link (app. dependent MAC)
– e.g. integrating OS functions, applications and communication

• Hence,
– embedded OS’s, if any, with very different programming models
– no TCP/IP – just a simple link layer communication with neighbors

Model in development view

Application

Node

Johan J. Lukkien, j.j.lukkien@tue.nl
TU/e Computer Science, System Architecture and Networking

Tuesday, September 28, 2010 23

OS

send (dest, ...) receive (...)

link layer

Network interfaceHardware

OS API
e.g. sensor inspection

Program life cycle

• Adaptations at runtime range from reconfiguration to reprogramming
– hence, program deployment upon system setup as well as during operation

• ‘Traditional’ means of deploying distributed systems:
– compile, store and run a program for each machine

• typically by having physical access
• example: MPI and PVM programs started as a distributed virtual machine

– client-server:
• server ‘always on’

Johan J. Lukkien, j.j.lukkien@tue.nl
TU/e Computer Science, System Architecture and Networking

Tuesday, September 28, 2010 24

• server ‘always on’
• client code started manually, e.g. after downloading

– configuration (parameters): encoded by the programmer, as part of the
program

• We investigate:
– how to deploy program code
– what to deploy (partial or full binary, intermediate code)
– when to add configuration

Heart
rate

Motion

Compiler Loader

Prog

1

Prog

Binary

1

Binary

SpO2

Traditional development applied to sensors

Prog

2

Binary

2

Johan J. Lukkien, j.j.lukkien@tue.nl
TU/e Computer Science, System Architecture and Networking

Tuesday, September 28, 2010 25

Motion3 3

SpO2

Motion

Heart rate

Deployment

‘Performance’ of deployment procedures

• Deployment procedures have independent choices:
1. send code through a physical connection (A) or send code over the air (B)
2. install specific code for each node (A) or send the same code to each node (B)

• Qualities aspects of these choices: performance & reliability
– performance: communication volume (= energy) and time spent

• 1A:
– takes ~minutes per sensor (extract sensor from environment; attach to server;

deploy (again) in environment)

Johan J. Lukkien, j.j.lukkien@tue.nl
TU/e Computer Science, System Architecture and Networking

Tuesday, September 28, 2010 26

deploy (again) in environment)
– obtaining the sensor physically may be prohibitive
– may integrate with normal operation procedures: seeking the right moment for

update

• 1B, 2A (needs reliable communication)
– the volume sent grows as the number of nodes
– note that not all nodes are involved; however, nodes close to the source will do

more work
– may integrate with normal operation procedure

• 1B, 2B (reliable multicast)
– the code is sent just once (experiments: next slide)

Simulation timing of reliable multicast

100 nodes, randomly in
a square (200mx200m)
configuration, average
delay per packet of
code (128b) to be
disseminated to a
percentage of nodes

Injection rate is 1/s

Johan J. Lukkien, j.j.lukkien@tue.nl
TU/e Computer Science, System Architecture and Networking

Tuesday, September 28, 2010 27

From: Collaborative Wireless Sensor Networks in Industrial and Business Processes,

Mihai Marin-Perianu, PhD thesis, Twente University, November 2008.

A full binary is usually
around 25kB

The time is determined
by the diameter of a
spanning tree built for
this multicasting (here
roughly 7.7). This could
become much larger in
certain cases.

Scalability of deployment procedures

• Usage parameters:
– number of nodes

– code size

• Metrics:
– delay, energy

• Scalability criterion:

Johan J. Lukkien, j.j.lukkien@tue.nl
TU/e Computer Science, System Architecture and Networking

Tuesday, September 28, 2010 28

• Scalability criterion:
– better than linear dependence

– small constants (e.g. per node handling penalty)

• In order to keep delay and energy small, our architecture
– must support loading over the air

– have a single, small code for all nodes
• or more precisely: a small number of different code classes

• Note that network diameter is not under our control

Analysis & design choices

• Compact code
• Machine & OS independence
• Interpreter on nodes
• Good for coordination code

deployment options

• Compact code (but less)
• Machine & OS dependence
• Linkloader on nodes
• Good for computational code

• Large code
• Machine & OS
dependence

• Gives most
efficient run-time

before deployment
• node-specific code
• simpler, for a node

Code specialization
per node at or after deployment

• all nodes same code
• requires selection mechanism on node

Johan J. Lukkien, j.j.lukkien@tue.nl
TU/e Computer Science, System Architecture and Networking

Tuesday, September 28, 2010 29

Program
for network Compiler Jit / assembler

Intermediate code
(e.g. bytecode)

Machine code Linkloader
(add libs+OS)

Runnable

static configuration
(config info given
once)

• useful mainly for
static deployment
(utmost performance)

dynamic configuration
(config info input to running program)

In
te

rp
re

te
r

Contents

• Introduction to the design problem

• Analysis

• Design decisions
– decisions

Johan J. Lukkien, j.j.lukkien@tue.nl
TU/e Computer Science, System Architecture and Networking

Tuesday, September 28, 2010 30

– decisions

– results

• Reflection on concepts

• Conclusion

Applied styles

• Architecture style

– publish & subscribe

– service oriented

– virtual machine

Johan J. Lukkien, j.j.lukkien@tue.nl
TU/e Computer Science, System Architecture and Networking

• Interaction style

– event-based

– asynchronous RPC

– active messages

Event-based interaction style

• Event: change in state of an entity
– typically related to observations, or time evolution
– entity: e.g. software component, object, machine

• Event notification:
– asynchronous message, without connection or acknowledge
– asynchronous invocation, without result (cf. asynchronous RPC)
– connector: event bus, event dispatcher

Johan J. Lukkien, j.j.lukkien@tue.nl
TU/e Computer Science, System Architecture and Networking

– connector: event bus, event dispatcher

• Event-based interaction style:
– interaction between entities is through event notifications only

• Motivation:
– decoupling in synchronization, delay binding

• Extended in an architectural style by adding architectural elements
– eventing subsystem, “brokers”

Design decision: services

• (after further literature search): Service Oriented Architecture

• Services are delivered by nodes through exposed interfaces on the
network, comprising
– events: sampled conditions

• with a given frequency the condition is checked; when true, the event ‘occurs’ (an
event body is executed, resulting in notifications)

– actions: procedure call (without result)

Johan J. Lukkien, j.j.lukkien@tue.nl
TU/e Computer Science, System Architecture and Networking

Tuesday, September 28, 2010 33

• Subscriptions: fill in event parameters; connect events and actions
– event generates a notification: an asynchronous remote procedure call
– publisher: event generator service
– subscriber: service of which an action is (possibly) triggered
– the sampling rate, and other parameterization is determined by the

subscriber

• A system service on each node comprises
– installing/managing new services
– establishing subscriptions

Process / development model

Publisher

(e.g.
Temp
service)

Subscriber

(e.g. a
temp value

accu-
mulator)

Runtime
system

Node

on event Temp when true do
SendToSubscribers (Accumulate, Temp())

on event Tempalarm when Temp>40
do SendToSubscribers (AlarmCall, Temp())

Need interface
here to
inform OS about
optimization
possibilities

Need interface

Johan J. Lukkien, j.j.lukkien@tue.nl
TU/e Computer Science, System Architecture and Networking

28-Sep-10 34

OS

send (dest, ...) receive (...)

link layer

Network interface

mulator)

Hardware

OS API
e.g. sensor inspection

Management

service creation

byte code interpreter

message handlingsystem calls

Need interface
here to
inform network
stack about
optimization
possibilities
(e.g. sleep
modes)

OS access
+ computational
library

Application builders view on WSN (deployment view)

Gateway

Program: event based;

specification of node services
and interconnections

to infrastructure

(logical)
connections pass events
(asynchronous RPCs
without result) packaged
as active messages

Johan J. Lukkien, j.j.lukkien@tue.nl
TU/e Computer Science, System Architecture and Networking

Tuesday, September 28, 2010 35

A (logical) model in the development view

• The mobile node clusters at the bottom

• Gateway bridges node domain with UDP

– can connect multiple WSNs in this way

• Simulated nodes interpret the exact same messages

simul

node

simul

ated

node

UDP broadcast

simul

node

simul

ated

node

load

er

arbitrary PC and

IP services

Johan J. Lukkien, j.j.lukkien@tue.nl
TU/e Computer Science, System Architecture and Networking

• Simulated nodes

– have access to arbitrary PC and Internet services

– may provide services to access the WSN

• Broadcast traffic injected in UDP appears in the node
domain as well

– in this way a loader can upload code

• Rather flat: two layers

WSN

Gateway

UDP broadcast

Design decision: addressing

• A message address is a boolean function that evaluates to true on a
destination
– parameters to this function may be provided

• within the message
• within the node

• Special cases are dealt with in the system service:
– a (regular) destination address
– a broadcast address

Johan J. Lukkien, j.j.lukkien@tue.nl
TU/e Computer Science, System Architecture and Networking

Tuesday, September 28, 2010 37

– a broadcast address

• Example:
– ‘node contains a temperature sensor’
– ‘local temperature is larger than 25’

• 25 as parameter in message

• We call this content based addressing

TempService

Design: Language & semantics
Node 1 & 2

event
read_temp

Address table:
0 : true // HasSysCall(Temp)
1 : false // NodeID==3
2 : true // HasService(TempService)

Sys Calls

Temp

HasSysCall

NodeID

Node 3

AvgTempService
event

flush_avg

Address table:
0 : false // HasSysCall(Temp)
1 : true // NodeID==3
2 : false // HasService(TempService)

Sys Calls

NodeID

HasSysCall

action
ReportTemp

Message
ReportTemp|14

State

sum
count

AverageTemp
$Handler=

ReportTemp

Node 3

Message
Subscribe

Johan J. Lukkien, j.j.lukkien@tue.nl
TU/e Computer Science, System Architecture and Networking

service AvgTempService($Handler)
define

sum := 0
count := 0

on event flush_avg when 2 <= count do
SendToSubscribers($Handler, sum / count);
count := 0; sum := 0

action ReportTemp(temp) do
sum := sum + temp;
count := count + 1

subscription AverageTemp

to TempService($Handler=ReportTemp)

with (period=30s, deadline=1m,
send="High", exec="Normal")

for [Network|*|HasSysCall(Temp)]

install TempService

for [Network|*|NodeID()==3]

install AvgTempService

install AverageTemp on

[Network|*|HasService(TempService)

service TempService($Handler)
on event read_temperature when True do

SendToSubscribers($Handler, Temp())

Design decision: messages

• A message fits in a single packet; the format corresponds closely to
the asynchronous procedure call (aka active messages)
– the payload is a handler and parameters to this handler

• handler: a user-defined service action or system service action

Application ID Deadline HopQoS CRCPayload

Handler Parameters

Johan J. Lukkien, j.j.lukkien@tue.nl
TU/e Computer Science, System Architecture and Networking

Tuesday, September 28, 2010 39

• Upon receipt of a message, a node executes the handler if it
understands it

• The following are examples of messages that encode a call to a
specific handler
– subscriptions

– flooding

– code upload

Handler Parameters

Sub NodeID CallbackPeriod QoSEvent PrioID

Composition

• Parameters to a handler can be:
– (remainder of) message

– (handler, parameter) pairs

• This allows

– conditional execution

Johan J. Lukkien, j.j.lukkien@tue.nl
TU/e Computer Science, System Architecture and Networking

Tuesday, September 28, 2010 40

– conditional execution

– forwarding

– having more than one handler

– adapting a message while handling and forwarding

Two H1 Par1 H2 Par2

Design decision: virtual machine (byte code)

• The compiler translates a program into byte code to be executed by
a virtual machine on nodes

• Fairly standard stack machine with respect to computations
– Focus on relating system calls to

messaging

• Special: memory organization with

Johan J. Lukkien, j.j.lukkien@tue.nl
TU/e Computer Science, System Architecture and Networking

Tuesday, September 28, 2010 41

• Special: memory organization with
respect to context
– the code of an event is executed in the

context of each subscription
• parameters are found with the subscription

– the code of a (message) handler is executed in the context of the
received message

• that can provide parameters to this handler

– global variables of the service are shared by handlers and actions

– global variables in the node are shared by the services

Contexts

• Ncontext

– Standard handlers

– System calls

• Gcontext

– Shared state

• Scontext

– Timing, params

Node

Handler 0

Handler 1
Gcontext

Service

Function 0 Function 1

Ncontext

Two

CBA

SubReq

Con

Message

Mcontext

Johan J. Lukkien, j.j.lukkien@tue.nl
TU/e Computer Science, System Architecture and Networking

Tuesday, September 28, 2010 42

– Timing, params

– Subscribers

• Mcontext

– Handler args

• The VM has instructions
to refer to each context

– e.g. PUSHG 1

Event 0

Event 1

Event 2

Subscription 0

Scontext

Subscription 1

Scontext

Con

Handler 0

Function 0

Time Message

Example: code load

• Configuration handler
– Built-in handler

• Install content-based
addresses

• Install new services

Config instructions

CON Config instructions

DEFA AddrID length bytestotal offset

SERV serviceID CRC

STATE total size

INIT length bytes

Johan J. Lukkien, j.j.lukkien@tue.nl
TU/e Computer Science, System Architecture and Networking

Tuesday, September 28, 2010 43

• Install new services
– (initialized) variables

– events

– actions (handlers)

• Bytes
– VM code

– Native code

–

DEFG varID size

STATE total size

DEFGI varID length bytestotal offset

DEFE eventID length bytestotal offset

DEFH handlerID length bytestotal offset

DEFF functionID length bytestotal offsetparams

TWO 9 # Two Handler

CON # Configuration Handler

DEFA 0 3 3 0 # CBA address 0

CALL[12] # NodeType

PUSHC[2] # "StorageNode"

EQ # NodeType() == "StorageNode"

CBA 0 0 # Content Based Address Handler

CON # Configuration Handler

SERV 1 3 # StorageService

STATE 14

DEFG 0 10 # storageArray0

DEFG 1 0 # p0

DEFGI 2 0 10 # size

DEFGI 3 0 12 # lastError

DEFE 0 19 19 0 # event flush0 DEFH 18 17 17 0 # StoreValue0

PUSHV[2] # $EventFlag PUSHG[1] # p0

Configuration example

• Two handler, calls
two other handlers
– Install address

(CON)
– Evaluate Content-

Based Address
• with CON as

parameter

• When address holds:

Two
CON

DEFA 0
(address)

CBA 0
CON

StorageService

DEFG
(state)

Johan J. Lukkien, j.j.lukkien@tue.nl
TU/e Computer Science, System Architecture and Networking

Tuesday, September 28, 2010 44

PUSHV[2] # $EventFlag PUSHG[1] # p0

PUSHC[2] PUSHG[2] # size

BAND EQ

RJF 14 # if cond: action RJF 4 # then:

PUSHG[1] # p0 PUSHC[13] # "Overflow"

PUSHC[0] STOREG[3] # lastError

MORE JUMP 17 # else:

RJF 9 # then: PUSHA[0] # value

PUSHV[0] # $Handler PUSHG[0] # storageArray0

PUSHC[2] PUSHG[1] # p0

PUSHG[1] # p0 STORES

PUSHG[0] # storageArray0 PUSHG[1] # p0

SPLICE 10 PUSHC[1]

NTFY ADD

PUSHC[0] STOREG[1] # p0

STOREG[1] # p0

• When address holds:
– install State
– install Event:

• Flush

– install Handler:
• StoreValue0

• Notice: all in a single
(~80 byte) message

D
E
F
E

(Flush)

D
E
F
H

(Store-
Value)

Contents

• Introduction to the design problem

• Analysis

• Design decisions
– decisions

Johan J. Lukkien, j.j.lukkien@tue.nl
TU/e Computer Science, System Architecture and Networking

Tuesday, September 28, 2010 45

– decisions

– results

• Reflection on concepts

• Conclusion

What is OSAS?

• A programming system for networked devices
– with special emphasis on low-resource devices

• Definition of
– language

• with the service and subscription concept

• and content-based addressing
– use a predicate to refer to a (set of) nodes

– virtual machine (byte code)

Johan J. Lukkien, j.j.lukkien@tue.nl
TU/e Computer Science, System Architecture and Networking

Tuesday, September 28, 2010 46

– virtual machine (byte code)
• has access to a set of system calls (Library and OS-provided functions)

– message format

• Four components
– Compiler

– Loader

– Runtime system

– Simulator
• transparent; interprets the exact same message format and can be part of

the network

Development cycle & toolchain (logical view for programmer)

SimulatorCompiler Loaderwsp

wnc

wbc

wnl wsl

1

2 3

Johan J. Lukkien, j.j.lukkien@tue.nl
TU/e Computer Science, System Architecture and Networking

Tuesday, September 28, 2010 47

Heart rate

Motion

SpO2

Gateway

4

3

4

Virtual or real

Simulated nodes act as if they are part of a network

Johan J. Lukkien, j.j.lukkien@tue.nl
TU/e Computer Science, System Architecture and Networking

Tuesday, September 28, 2010 48

Test a single node

Test a cluster

Connect multiple sites

Test routing protocol Simulate a scenario

Contents

• Introduction to the design problem

• Analysis

• Design decisions

Johan J. Lukkien, j.j.lukkien@tue.nl
TU/e Computer Science, System Architecture and Networking

Tuesday, September 28, 2010 49

• Reflection on concepts

• Conclusion

Which role play the concepts?

• Processes
– client-server relations based on third party binding
– each sensor acts as separate process

• Communication
– event: asynchronous remote procedure call without result
– link (neighborhood communication) as basis

• layer 2, or overlay

Johan J. Lukkien, j.j.lukkien@tue.nl
TU/e Computer Science, System Architecture and Networking

Tuesday, September 28, 2010 50

• layer 2, or overlay

• Naming and addressing
– content-based addressing

• implemented on top of flooding

– neighborhood addressing, can be used to build routing

• Reliability

Conclusion

• The goal:
– develop a programming framework for sensor networks

• specify sensor behavior, and computations
– This is derived from a single program for the entire network
– The compiler uses global knowledge for optimization

» no discovery or interpretation of functionality needed
– Computations: delegated to pre-installed libraries (weak point)
– Coordination: events, subscriptions

Johan J. Lukkien, j.j.lukkien@tue.nl
TU/e Computer Science, System Architecture and Networking

Tuesday, September 28, 2010 51

– Coordination: events, subscriptions

• adjust sensor behavior
– by changing subscriptions

• integrate in infrastructure
– simulated nodes are part of the network but support more

powerful OS calls

• ‘convenient’ deployment (impossible to physically contact each
sensor)

– deployment through the air using content-based addressing

Memory resources

Memory Footprint
TinyOS version for ICL nodes (values in bytes)

Static

OS image 24084 ROM, 1191 RAM

interpreter 1664 ROM, 20 RAM

system calls 1530 ROM, 146 RAM

Dynamic

Johan J. Lukkien, j.j.lukkien@tue.nl
TU/e Computer Science, System Architecture and Networking

Tuesday, September 28, 2010 52

Dynamic

bytecode evaluation stack 160

content based address 4 + length(bytecode)

service 14 + #global variables * 2

event generator 4 + length(bytecode)

action 6 + length(bytecode)

subscription 16 + #parameters * 2

message 12 + length(payload)

Conclusion

• I did not address the development view in detail
– modules:

• run-time system with node OS

• simulator, loader, compiler organization
– perhaps sharing of data structures

– files:
• directory organization

• The current system has been built according to this architecture and operates

Johan J. Lukkien, j.j.lukkien@tue.nl
TU/e Computer Science, System Architecture and Networking

Tuesday, September 28, 2010 53

• The current system has been built according to this architecture and operates
satisfactorily

– needs improvements in reducing energy

• The architecture as well as the design were driven mainly by extra-functional
properties, and directed by careful analysis

• Ideas can carry over to ‘regular’ systems; however, their value is not obvious
then

– current trends are towards independent services that determine their mode of
cooperation by extensive processing (e.g. web services with ontologies)

Some studied approaches

• Virtual machines
– P. Levis, D. Culler. Maté: a tiny virtual machine for sensor networks, Proc. of

ASPLOS-X, 2002.

– R. Miller, G. Alonso, D. Kossmann, A Virtual Machine For Sensor Networks,
Proc. of EuroSys 2007.

• Special-purpose engine
– S.R. Madden, M.J. Franklin, et al. TinyDB: an acquisitional query processing

system for sensor networks, ACM Transactions on Database Systems, Vol.30,

WASP Project
IST.034963 Project

system for sensor networks, ACM Transactions on Database Systems, Vol.30,
Issue 1, March 2005.

– H. Liu, T. Roeder, et al. Design and Implementation of a Single System Image
Operating System for Ad Hoc Networks, Proc. of MobiSys, 2005.

• Macro programming
– R. Gummadi, O. Gnawali, R. Govindan. Macro-programming Wireless Sensor

Networks using Kairos, Proc. of DCOSS, 2005.

– L. Evers, P.J.M. Havinga, et al. SensorScheme: Supply chain management
automation using Wireless Sensor Networks, Proc. of ETFA, 2007.

Johan J. Lukkien, j.j.lukkien@tue.nl
TU/e Informatica, System Architecture and Networking

54

Approaches (cnt’d)

• Active messages
– P. Levis, D. Gay, and D. Culler, Active Sensor Networks. Proc. of NSDI, 2005.

– T. von Eicken, D. Culler, et al. Active messages: a mechanism for integrated
communication and computation, Proc. of ISCA, 1992.

• IP to the sensors
– G. Montenegro, N. Kushalnagar, J. Hui, D. Culler, Transmission of IPv6 Packets

over IEEE 802.15.4 Networks, RFC4944, 29 pages, September 2007

WASP Project
IST.034963 Project

• Content-based addressing
– A. Carzaniga, D. S. Rosenblum, and A. L. Wolf. Content-based addressing and

routing: A general model and its application. Technical Report CU-CS-902-00,
Department of Computer Science, University of Colorado, Jan. 2000.

Johan J. Lukkien, j.j.lukkien@tue.nl
TU/e Informatica, System Architecture and Networking

55

