
Architectures of Distributed Systems 
2010/2011

5-Oct-10 Johan J. Lukkien, j.j.lukkien@tue.nl

TU/e Computer Science, System Architecture and Networking
15-Oct-10 Johan J. Lukkien, j.j.lukkien@tue.nl

TU/e Informatica, System Architecture and Networking
1

Naming & references

Johan Lukkien



Agenda

• Service discovery

• On naming

• Distributed flat resolution 

– DHT (distributed hashtable) of Chord

• Distributed structured resolution

5-Oct-10 Johan J. Lukkien, j.j.lukkien@tue.nl

TU/e Computer Science, System Architecture and Networking
2

– DNS



Service discovery model

• The basic problem: 
how do two parties, 
that don’t know 
each other, meet?

• Three roles:

– publisher, 
seeker, mediator 

5-Oct-10 Johan J. Lukkien, j.j.lukkien@tue.nl

TU/e Informatica, System Architecture and Networking
3

seeker, mediator 
(broker)

• Tasks:

– service/query 
advertisement, 
(propagation), 
matching, 
evaluation

Slides based on work by Melissa Tjiong, SAN, TU/e



Service discovery process

publish

5-Oct-10 Johan J. Lukkien, j.j.lukkien@tue.nl

TU/e Informatica, System Architecture and Networking
4

find



Discovery techniques
• Discover and contact, alternatives

– Server registers at repository (a)
• can be on different machine

– client contacts repository for 
access point

• e.g. DCE, DNS, SLP

– client contacts known access point
for server access

• needs some accepted list of services
• example: services coupled to fixed 

5-Oct-10 Johan J. Lukkien, j.j.lukkien@tue.nl

TU/e Informatica, System Architecture and Networking
5

• example: services coupled to fixed 
transport port

– e.g., ftp: 21, telnet: 23 etc.

– Server:
• ‘Superserver’, listens to many

access points (b)
– Superserver instantiates particular

server on request
– example: inetd (internet daemon)

• just start the server beforehand
on the known access point

• Note: 
– the repository (a) or superserver (b) is again a server itself



Inetd (create server upon request)

5-Oct-10 Johan J. Lukkien, j.j.lukkien@tue.nl

TU/e Informatica, System Architecture and Networking
6

Picture from ‘The Apache Modeling Project’, 

Grone, Knopfel, Kugel, Schmidt, Potsdam University



Further alternatives: immediate

• Interested parties find each other through multicasting (broadcasting)
– server or client, or both, 

• multicast presence periodically   or
• single multicast of each party upon joining a community (network, other group)  or
• multicast as query

– examples: unmanaged SLP, DHCP, SSDP (UPnP), Apple Bonjour (rendez-vous)

• Important for bootstrapping 

5-Oct-10 Johan J. Lukkien, j.j.lukkien@tue.nl

TU/e Informatica, System Architecture and Networking
7

• Advantage:
– fully distributed

– no central state maintained

– ‘zero configuration’

• Disadvantage
– each contender implements the entire protocol, including storage 

• no shared services

– scalability
• performance [what are performance measures of interest here?]

– limited to multicast (broadcast) scope



Im
m

e
d
ia

te
 a

rc
h
it
e
c
tu

re

5-Oct-10 Johan J. Lukkien, j.j.lukkien@tue.nl

TU/e Informatica, System Architecture and Networking
8

Im
m

e
d
ia

te
 a

rc
h
it
e
c
tu

re



DHCP

• Immediate, bootstrapping protocol, 
provides 

– IP address, with a lease

– addresses of caching DNS servers

• Client side broadcast on local net

• Client side selection of server (not 
shown in previous diagram)shown in previous diagram)

5-Oct-10 Johan J. Lukkien, j.j.lukkien@tue.nl

TU/e Computer Science, System Architecture and Networking
9

from RPF2131: DHCP



After discovery: server cluster

• Goals

– improve performance

• scalability: increase number of requests served

• decrease delay

– improve reliability

– improve availability

5-Oct-10 Johan J. Lukkien, j.j.lukkien@tue.nl

TU/e Informatica, System Architecture and Networking
10

• Problems to be solved:

– transparent (for client) distribution 

of request

• particularly: dealing with the single access-point

– security

– management

• see Planetlab case study in the book

Server cluster general architecture



• Handoff based on application request
– supports dedicated servers

– requires request interpretation
• potential performance problems

• TCP handoff
– incoming transport-layer

request passed to the server

Cluster access

5-Oct-10 Johan J. Lukkien, j.j.lukkien@tue.nl

TU/e Informatica, System Architecture and Networking
11

request passed to the server

– needs protocol adaptation
• ‘spoofing’ of the

destination ID

• switch routes all request traffic

• OS support (both sides)

• Multiple access points
– DNS load balancing (e.g. Google, Wikipedia)

• DNS resolution cycles through a sequence of addresses

• DNS resolution uses geographic information of client (geoDNS)



Agenda

• Service discovery

• On naming

• Distributed flat resolution 

– DHT (distributed hashtable) of Chord

• Distributed structured resolution

5-Oct-10 Johan J. Lukkien, j.j.lukkien@tue.nl

TU/e Computer Science, System Architecture and Networking
12

– DNS



Naming

• A name serves as reference to an entity

– entity: i.e., anything that can be operated upon

• Motivation:

– Delay binding

• mobility transparency: name remains constant under mobility

• replication transparency: map name to several different entities

5-Oct-10 Johan J. Lukkien, j.j.lukkien@tue.nl

TU/e Computer Science, System Architecture and Networking
13

• replication transparency: map name to several different entities

• location transparency

– Lookup

• name serves as a means to locate an entity

– Human-friendliness



Naming in the Internet stack

DNS, URL

(IP, port)

structured, both

(structured, flat)

Structured/flat             Name

5-Oct-10 Johan J. Lukkien, j.j.lukkien@tue.nl

TU/e Computer Science, System Architecture and Networking
14

(IP, port)

IP address

MAC address

(structured, flat)

structured

flat



Namespace

• Set (of names)

– Specification/algorithm as how to generate names

• Methods

– flat naming

• simply an unstructured set of names

5-Oct-10 Johan J. Lukkien, j.j.lukkien@tue.nl

TU/e Computer Science, System Architecture and Networking
15

• simply an unstructured set of names

– structured naming

• hierarchical, mostly, e.g., /user/johanl/....

– relative name: relative with respect to a given prefix

– absolute name: complete

• prefixing

– embedding a set of names uniquely into a larger set

» e.g. <gm:weerbericht xmlns:gm="http://GlobalMeteo.com">



Entities and identifiers

• E: Entities
– the collection of ‘things’ that need to be referred

• resources, devices, network ports, ....

• I: Identifiers
– the namespace for entities 

5-Oct-10 Johan J. Lukkien, j.j.lukkien@tue.nl

TU/e Computer Science, System Architecture and Networking
16

• An identifier for an entity is unique; identifiers are not re-
used
– e.g., MAC address as identifier for a network card

• Id: E → I
– Id is injective and static



Access points and addresses
• X: Access points

– a access point represents a place where an entity can be accessed

– an entity can have several access points
• loosens the tight relation: entity-identifier 

• an entity is associated with a subset of X

• A: Addresses
– a namespace for access points

– an address of an access point is unique

5-Oct-10 Johan J. Lukkien, j.j.lukkien@tue.nl

TU/e Computer Science, System Architecture and Networking
17

– an address of an access point is unique
• Though not always! This leads to ambiguity in the resolution procedure.

• Examples?

– addresses of access points may change over time 

• Example
– A PC has several access points (network cards). Each network card 

receives dynamically an IP address. Resolution of the IP address yields 
the identifier of the network card.

– The access point of the network card is found directly through this 
identifier.



Binding, Resolution

• Binding: (the establishment of) the relationship between a reference 
(a name) and a referred object (another name or an access point)

– symbolic: referred object is again a similar reference

– aliasing: several names for the same object

• Resolution: given a name, determine referred object

– ‘structured’ resolution: follow structure and levels in naming hierarchy, e.g

5-Oct-10 Johan J. Lukkien, j.j.lukkien@tue.nl

TU/e Computer Science, System Architecture and Networking
18

– ‘structured’ resolution: follow structure and levels in naming hierarchy, e.g

• given a DNS name, find Transport address, then find MAC address

– ‘flat’ resolution: flat naming, no hierarchy support, e.g.,

• reverse DNS: what is the DNS name of this IP address?

– not entirely flat though as still information is remaining in the IP address

• reverse ARP: what is the IP address of this MAC address?

• given identifier, determine access point

• Closure: starting point in resolution



Agenda

• Service discovery

• On naming

• Distributed flat resolution 

– DHT (distributed hashtable) of Chord

• Distributed structured resolution

5-Oct-10 Johan J. Lukkien, j.j.lukkien@tue.nl

TU/e Computer Science, System Architecture and Networking
19

– DNS



Flat naming and resolution

• Problem: given identifier, find access point 

– possibly, via an intermediate structured address

• Search (see: service discovery)

– broadcast: ‘ask everyone’

• limited physical scope

• example: ARP

– multicast

5-Oct-10 Johan J. Lukkien, j.j.lukkien@tue.nl

TU/e Computer Science, System Architecture and Networking
20

– multicast

• e.g. overlay networks

• limited logical scope

• example: searching in P2P overlay

• may combine with repositories storing associations (identifier, address)

– table lookup – hashing, tree-search

• hashing inside repositories

• distributed hash tables

• distributed, tree-like repositories



Example: distributed storage and lookup

• Flat name space of m-bit identifiers

• Set of nodes, N, set of other entities (files, objects, processes, ...)

• Each node or entity e has an identifier id(e)
– typically a random assignment

– we refer to nodes by their identifier; hence, ‘node p’ means ‘the node with identifier p’

– the set from which we take nodes is therefore id(N)

• Identifier k has an associated node, the one with the next largest or equal id, 
modulo 2m

5-Oct-10 Johan J. Lukkien, j.j.lukkien@tue.nl

TU/e Computer Science, System Architecture and Networking
21

modulo 2
– succ(k) = (min n є id(N), n ≥ k: n)  if k ≤ max(id(N))

min n є id(N) otherwise

• Using this function succ we define successor and predecessor of a node p
– successor of p is succ(p+1)

– predecessor of p, pred(p) is defined as follows: pred(p) = y  ≡  succ(y+1) = p

• An entity with identifier k is managed by (stored by) node succ(k)

• Hence, the problem is: given k, find (the address of) succ(k)



Example

• Assume m = 4, N = { 2, 5, 8, 12 }

• succ(4), succ(5), succ(6), succ(13)?

– succ(4) = 5, succ(5) = 5, succ(6) = 8, succ(13) = 2 

• Successor of 2, 5, 8, 12?

– 5, 8, 12, 2

• Predecessors of 2, 5, 8, 12?

– 12, 2, 5, 8

5-Oct-10 Johan J. Lukkien, j.j.lukkien@tue.nl

TU/e Computer Science, System Architecture and Networking
22

– 12, 2, 5, 8

• 2 stores 

– 0, 1, 2, 13, 14, 15

• 5 stores 

– 3, 4, 5

• 8 stores 

– 6, 7, 8

• 12 stores 

– 9, 10, 11, 12



Distributed location lookup
• Logically the nodes are organized

in a pipelined or cyclic fashion

• Linear search
– node p stores addresses of 

succ(p+1) and pred(p)

• ‘Binary’ search (distributed hash 
table, DHT)

– node p stores addresses of 

5-Oct-10 Johan J. Lukkien, j.j.lukkien@tue.nl

TU/e Computer Science, System Architecture and Networking
23

– node p stores addresses of 
nodes that take large steps 
(chords) along the circle

– routing table with entries for 
succ(p+2i-1), 1<i≤m

• Chord system: ‘finger tables’

• Issues in:
– entity insert: simple

– node insert: 
• table updates in DHT
• relocate entities

– routing efficiency - use the 
underlying network efficiently 



Flat naming and mobility

• Leave ‘follow me’ to new location

– typically as part of middleware to establish location transparency as well 

as mobility transparency

– sensitive to 

• broken links (dependability)

– all intermediates must be online

• long chains (efficiency, scalability)

5-Oct-10 Johan J. Lukkien, j.j.lukkien@tue.nl

TU/e Computer Science, System Architecture and Networking
24

• long chains (efficiency, scalability)

– all intermediates must maintain state

– solutions:

• pointer fusion

– distributed object based systems

• keep first indirection up-to-date

– mobile IP: maintain a reference to current location at home location

– (Question: how transparent can this be?)



• Mobile object replaced 
by stub that forwards 
invocations

• Pointer fusion: final 
stub responds with 
new reference (below)

– not transparent

5-Oct-10 Johan J. Lukkien, j.j.lukkien@tue.nl

TU/e Computer Science, System Architecture and Networking
25



Mobile IP
• Home agent (HA) maintains binding between a 

fixed home address and the current care-off 
address of a mobile node.

• HA receives packets from a client (‘correspondent 
host’) on the home address and passes them on 
to current care-off address, via an IP tunnel. 

• The foreign agent maintains the binding (mobile 
node, care-off address) at the current location. 
Typically, it is addressed via the care-off address 
and forwards the traffic via the local link.

care-off address

home address

5-Oct-10 Johan J. Lukkien, j.j.lukkien@tue.nl

TU/e Computer Science, System Architecture and Networking
26

and forwards the traffic via the local link.

• Mobile node uses home address as source in its 
datagrams.

• This establishes triangular routing.

• Agent discovery: immediate, advertisement of 
both query and agent

• Agent handoff: upon registering with a new 
foreign agent (2nd figure)

Pictures taken form Helsinki University of Technology, Seminar on MM



Agenda

• Service discovery

• On naming

• Distributed flat resolution 

– DHT (distributed hashtable) of Chord

• Distributed structured resolution

5-Oct-10 Johan J. Lukkien, j.j.lukkien@tue.nl

TU/e Computer Science, System Architecture and Networking
27

– DNS



Hierarchical naming systems

• Graph: labeled, directed, acyclic

– edge labels: partial names

– paths: names

• Leaf nodes

– access point

5-Oct-10 Johan J. Lukkien, j.j.lukkien@tue.nl

TU/e Computer Science, System Architecture and Networking
28

– name in new naming system

– name in same naming system (‘symbolic’)

• Directory nodes

– access point to directory structure

• references to child nodes

– often represented by a special symbol

• “/”, “.”



Name space examples
• File systems

– usually, hierarchy

– resolution: through file-tables

– closure: e.g. superblock

• Internet addresses

– basic hierarchy

– binding: e.g. DHCP

– resolution & closure: ARP

5-Oct-10 Johan J. Lukkien, j.j.lukkien@tue.nl

TU/e Computer Science, System Architecture and Networking
29

– resolution & closure: ARP

• Internet names

– hierarchy

– binding and resolution: DNS (yields Internet-address)

– closure: local DNS server

• URL

– combines several naming systems

– Question: what is the resolution procedure here? and the closure?



Filesystem

5-Oct-10 Johan J. Lukkien, j.j.lukkien@tue.nl

TU/e Computer Science, System Architecture and Networking
30



Joining namespaces

• Direct catenation, as in URLs
– ftp://ftp.win.tue.nl/johanl

• Use name of system as a prefix
– systemA:/home/..., 

systemB:/home/....

– resolve in new root

• Symbolic linking

5-Oct-10 Johan J. Lukkien, j.j.lukkien@tue.nl

TU/e Computer Science, System Architecture and Networking
31

• Symbolic linking
– store reference in second name 

system as referred object
• e.g. contents of /home/johanl/aap

is oracle1://johanl 
• similar in effect to mounting, but less 

dynamic: stored within the file itself

• Mounting
– (tell the resolution procedure that) from a certain prefix p on, a new resolution is used

• mainly modification of resolution procedure
• closure from p onward stored with p in a table of the resolver 
• transparent resolution 



A distributed naming service

• A naming services provides
– operation for adding, removing, and lookup of names

– a closure mechanism: where does the search start?
• Example closures: local, known fileserver, local, known DNS server, known gateway etc., 

just a context, ....
• notice: at the place where two namespaces join, a closure mechanism must be included

• For performance, scalability and dependability: distribute...
– ...the data (i.e., directory nodes and subgraphs)

5-Oct-10 Johan J. Lukkien, j.j.lukkien@tue.nl

TU/e Computer Science, System Architecture and Networking
32

– ...the data (i.e., directory nodes and subgraphs)

– ...the process of name resolution

• Levels in the graph
– Global

• jointly managed by several administrations
• changes are rare

– Administrational
• nodes managed by a single administration

– Managerial
• nodes within single administration mapped onto local nameservers
• frequent changes



Comparison of layers

Item Global Administrational Managerial

Geographical scale of network Worldwide Organization Department

Total number of nodes Few Many Vast numbers

Responsiveness to lookups Seconds Milliseconds Immediate

Update propagation Lazy Immediate Immediate

5-Oct-10 Johan J. Lukkien, j.j.lukkien@tue.nl

TU/e Computer Science, System Architecture and Networking
33

Update propagation Lazy Immediate Immediate

Number of replicas Many None or few None

Is client-side caching applied? Yes Yes Sometimes



Example: DNS namespace

root

root zone:

20 generic top-level 

domains

248 country-code TLDs

5-Oct-10 Johan J. Lukkien, j.j.lukkien@tue.nl

TU/e Computer Science, System Architecture and Networking
34

Domain: subtree

Zone: delegated portion
of a domain

(though terms are often
used interchangeably)



DNS
• It is organized as a worldwide collection of name servers, collectively 

responsible for

– maintaining the tree-like database of DNS

– responding to queries aimed at finding a host IP address, as well as 

several other services (e.g. mail server)

• Levels in the graph

– Global

5-Oct-10 Johan J. Lukkien, j.j.lukkien@tue.nl

TU/e Computer Science, System Architecture and Networking
35

• the ‘roots’; jointly managed by several administrations

– 13 replicated servers, named A-M

– using anycast communication with clients

• ~270+ top level domains, managed by 

– Administrational

• nodes managed by a single administration (e.g. TU/e)

– Managerial – book: not part of DNS

• frequently changing local resources: part in URL after the DNS name

• file system: e.g. your local website



DNS, extra-functional properties

• modification by different administrations

• extreme robustness

– even under breaking apart of the distributed system

• scalability

– usage parameters:

• geographical spread

• # machines• # machines

• # queries

– metrics:

• query response time

– scalability criterion

• constant on average, at worst an occasional spike

5-Oct-10 Johan J. Lukkien, j.j.lukkien@tue.nl

TU/e Computer Science, System Architecture and Networking
36



Name servers

• Name server serves a certain zone

– authoritative or cached answer

– authoritative server for a host: always 

maintains a record of that host

• Root servers: are authoritative for root 
and top-level domains

• Name servers are configured with 

5-Oct-10 Johan J. Lukkien, j.j.lukkien@tue.nl

TU/e Computer Science, System Architecture and Networking
37

• Name servers are configured with 
addresses of root servers

• Name servers for a domain 

– know their child domains

– are typically replicated: primary (initialized from file) and secondary

server (synchronizes with primary)

• DNS is made available to applications as a middleware service
– typically a library (resolver) that calls upon a configured name server

– that server often uses BIND (Berkeley Internet Name Daemon), named

model in process view
from Microsoft technet



Distributed resolution

• Query: resolve(dir, name1, name2, ...)

• Server responsible for directory node dir performs one step and finds 
newServer

• Iterative: return newServer to client

– caching: information becomes distributed

5-Oct-10 Johan J. Lukkien, j.j.lukkien@tue.nl

TU/e Computer Science, System Architecture and Networking
38

– caching: information becomes distributed

– communication cost: from client to all named servers

• Recursive: pass remaining request on to newServer; pass result on 
to client

– caching: follows name structure

– communication cost: 
• exploits locality in name

• but repeated queries do not enjoy optimization



Iterative

5-Oct-10 Johan J. Lukkien, j.j.lukkien@tue.nl

TU/e Computer Science, System Architecture and Networking
39



Recursive

5-Oct-10 Johan J. Lukkien, j.j.lukkien@tue.nl

TU/e Computer Science, System Architecture and Networking
40



Caching

Server for 
node

Should 
resolve

Looks up
Passes to 
child

Receives 
and caches

Returns to 
requester

cs <ftp> #<ftp> -- -- #<ftp>

vu <cs,ftp> #<cs> <ftp> #<ftp> #<cs>
#<cs, ftp>

ni <vu,cs,ftp> #<vu> <cs,ftp> #<cs>
#<cs,ftp>

#<vu>
#<vu,cs>

5-Oct-10 Johan J. Lukkien, j.j.lukkien@tue.nl

TU/e Computer Science, System Architecture and Networking
41

#<cs,ftp> #<vu,cs>
#<vu,cs,ftp>

root <ni,vu,cs,ftp> #<nl> <vu,cs,ftp> #<vu>
#<vu,cs>
#<vu,cs,ftp>

#<nl>
#<nl,vu>
#<nl,vu,cs>
#<nl,vu,cs,ftp>

• For the recursive case: see table

• For the iterative case: the iterative server caches all information
– hence: client asks local name server (and not the root server) in a recursive way 

– name server operates iteratively to improve caching



Communication cost

5-Oct-10 Johan J. Lukkien, j.j.lukkien@tue.nl

TU/e Computer Science, System Architecture and Networking
42



Root servers (25-09-09) and replications

weekly traffic for IPv4 packets

H server, H1+H2+H3 (28-09-09)

(green: inbound:blue: outbound)

5-Oct-10 Johan J. Lukkien, j.j.lukkien@tue.nl

TU/e Computer Science, System Architecture and Networking
43



k-servers traffic

5-Oct-10 Johan J. Lukkien, j.j.lukkien@tue.nl

TU/e Computer Science, System Architecture and Networking
44



Some information about root servers

• Investigation in 2002 on f-servers: 19%
of the calling hosts and 98% of all 
queries is not legitimate, e.g.,

– query a local address

– query an IP address rather

than a DNS name

– query a non-existent TLD

5-Oct-10 Johan J. Lukkien, j.j.lukkien@tue.nl

TU/e Computer Science, System Architecture and Networking
45

– query a non-existent TLD

– lousy installations of DNS clients

or erroneous implementations

• e.g. filtering inbound DNS but not 

outbound traffic (blocking responses)

– ‘stub’ servers call a root server directly

• Servers are fast (see figure)

• Many servers are replicated

– e.g. F has 46 sites (in 2009)

from DNSstuff.com



Scaling

• Response time depends on depth of search

• Global servers get lots of requests

– need to limit traffic / source

• Strategies

– replicate

5-Oct-10 Johan J. Lukkien, j.j.lukkien@tue.nl

TU/e Computer Science, System Architecture and Networking
46

– replicate

• multiple servers at global and administrational level

• using anycast and geoDNS

– geoDNS: respond with server IP closest to query source

– closure mechanism: start at local server that uses caching

– addresses are assumed not to change very frequent

• e.g. 24h-48h for TLD

• does not work with highly mobile devices



DNS: database

• Each domain has a set of associated resource records

– for a single host: just its IP address

• A name server can give an authorative answer about the resource 
records it manages

– for which is has a Start of Authority record

5-Oct-10 Johan J. Lukkien, j.j.lukkien@tue.nl

TU/e Computer Science, System Architecture and Networking
47

• Record contains

– domain name

– time to live

– class – mostly IN(ternet)

– type 

– value



Resource record in DNS

Type of 
record

Associated 
entity

Description

SOA Zone Holds information on the represented zone

A Host Contains an IP address of the host this node represents

MX Domain Refers to a mail server to handle mail addressed to this domain

SRV Domain Refers to a server handling a specific service

5-Oct-10 Johan J. Lukkien, j.j.lukkien@tue.nl

TU/e Computer Science, System Architecture and Networking
48

SRV Domain Refers to a server handling a specific service

NS Zone Refers to a name server that implements the represented zone

CNAME Node Symbolic link with the primary name of the represented node

PTR Host Contains the canonical name of a host

HINFO Host Holds information on the host this node represents

TXT Any kind Contains any entity-specific information considered useful



Example database for domain cs.vu.nl

5-Oct-10 Johan J. Lukkien, j.j.lukkien@tue.nl

TU/e Computer Science, System Architecture and Networking
49



Example (cnt’d)

5-Oct-10 Johan J. Lukkien, j.j.lukkien@tue.nl

TU/e Computer Science, System Architecture and Networking
50



Packet format

• UDP carrier

• Header: 

– id(16),

– query?(1), 

– opcode (standard, inverse,

server status)(4)

– authoritative?(1)

– truncated?(1)

5-Oct-10 Johan J. Lukkien, j.j.lukkien@tue.nl

TU/e Computer Science, System Architecture and Networking
51

– truncated?(1)

[lost bytes beyond the 512]

– recursion desired?(1)

– recursion available(1) 

• server response

• Later, extended with 

security measures to 

avoid tampering

– secure carrier

– signing

• The limit of 512 bytes has consequences

The query: ‘who serves the root’ (‘.’, or the empty domain)

has as answer: the list of root servers

This list consists of 

NS records: name of name server

A records: address of name server

Of these, only 13 fit in a single packet

Hence, 13 root servers



Concluding remarks

• A DHT-based implementation of DNS where names are hashed is 
possible as well

– this can be done for any naming system in which we can derive some serial 

representation systematically

– although the structure then disappears

• The DNS lookup (or structured lookup) is, in fact, based on a key

5-Oct-10 Johan J. Lukkien, j.j.lukkien@tue.nl

TU/e Computer Science, System Architecture and Networking
52

• The DNS lookup (or structured lookup) is, in fact, based on a key

• Instead, a lookup based on attribute values – including searching and 
wildcards – can be needed

– a list of (attribute, value) pairs is called a directory

– service is termed:, directory services, in contrast to a naming service

• OSI X.500 directory service

• LDAP, Lightweight Directory Access Protocol

– MS Active Directory


