TECHNISCHE UNIVERSITEIT EINDHOVEN
Faculteit Wiskunde en Informatica

Examination Operating Systems (2IN05)

on January 8, 2008, 14.00h-17.00h.
The exam consists of two parts that are handed in separately. Part A consists of knowledge-questions that can certainly be answered in maximally 60 minutes, on a separate sheet. Extensive explanations are not required in part A, compact answers will be appreciated, answers will be judged correct/wrong only. After you have handed in part A, possibly much sooner than this 60 minutes, you may use the course book and the slides from the lectures for part B. (Note: just the lecture slides, no slides concerning exercises or previous exams or any other notes.)
Work clearly. Read the entire parts first before you start. Scores for exercises are indicated between parentheses. The score sums to 10.2 points. There are 2 pages in total.
PART A (5.2 points)
1. Give the ‘classic’ classification of i/o devices in three categories.

a. terminals: block devices, streaming devices ; communication devices

2. Describe briefly the two places for standardization in the use of i/o devices and their integration into the operating system.

a. at the OS-API level: provide a unified interface to applications

b. at the driver level: integrate devices in a standard way into the OS

3. Mention three reasons to use buffering in a kernel.
a. Sharing

b. Caching

c. Solve speed differences

d. Solve user/kernel problems

4. Mention 5 properties of an ideal memory manager.
a. Multi-programmering

b. Geen aangrenzende opslag

c. Sla de programmadelen ALLEEN op in het werkgeheugen INDIEN ze gebruikt worden door de CPU

d. Geen geheugenverspilling

e. CPU moet niet op de MM hoeven te wachten

f. Geen extra complexiteit

g. Geen extra hardware vereist

h. Onbegrensde geheugengrootte

5. When is a set of tasks D called a deadlocked set?
a. D contains at least one not terminated task;
b. All tasks in D are blocked;
c. For each non-terminated task t in D, any task that might unblock it is also in D
6. Assuming the operating system detects the system is deadlocked, what can the operating system do to recover from deadlock?
a. preempt resources

b. roll-back to safe state

c. kill process

7. What is the difference between symbolic linking and mounting?

a. symbolic link: naam in nieuw naamsystem + closure vormen de inhoud van een file

b. mounting: closure en prefixing worden (transparant) toegevoegd aan het resolutie algoritme – samenvoegen van twee naamruimten.

8. Explain what an incremental indexed file organization is.

a. A file is accessed via indirection blocks that contain references to other blocks. These other blocks may be reference blocks once more or data blocks. The depth of this hierarchy determines the maximal file size. In an incremental scheme this depth increases with length: initially, a single indirection is used; for content after a certain maximum size two indirections are used, etc.

9. Explain the advantage of an incremental indexed scheme compared to a multi-level scheme.

a. In a multi-level scheme, the depth is fixed thus giving also small files an access penalty for the largest possible file. The advantage is therefore that small files are accessed fast(er).

10. Which information must be stored in a directory entry?

a. File name (entry name, to be precise)
b. (Reference to) Description
c. (Reference to) access point
The last two can be collected into a single reference.

11. What are the tasks of the synchronous part of the device driver?

a. check if data is available

b. prepare the device for generating the data [if required]

c. stop caller [if required]

12. What are the reasons to have bottom and top halves of an interrupt handler, and what are their tasks?

a. top halve: quick response to interrupt handling, prepare for another interrupt

· save additional state not saved by the hardware

· re-enable interrupts, except the one under consideration and possibly lower priority ones

· take away volatile state from the interrupting device as soon as possible

· re-enable the interrupt
b. bottom halve: full processing of the interrupt, serving OS data structures and user processes
· process the obtained information

· wake up waiting processes and select a new one for continuation

· return from interrupt
13. What are the goals of different RAID levels and how are they achieved (mention 3).
a. increase performance (level 0, 1): distribute one logical disk over 2 physical disks
b. reliability (level 1-6): full copy, error correcting codes, parities

c. avoiding hot-sponts: (level 5+6): distribute parities

PART B (5 points)
1. Given is the following set of processes, with correspondent maximal numbers of required resources of three possible types.
	Process\resource
	r1
	r2
	r3

	A
	1
	2
	1

	B
	1
	1
	1

	C
	1
	2
	1

The number of resources for types r1, r2 and r3 are 1, 2 and 2 respectively. Consider the situation that occurs after execution of A: Req (r3, 1); A: Acq (r3, 1);
a) (0.5 pt) Draw the full claim graph for this situation.

b) (1.0 pt) For each of the following two action sequences, explain if the Acq’s are admitted according to the bankers algorithm. (Note: the two sequences are independent, they both start from the same state.) Draw diagrams to explain your answer.
1. C: Req (r3, 1); C: Acq (r3, 1); A: Req (r1, 1); A: Acq (r1, 1)
2. B: Req (r2, 1); B: Acq (r2, 1); C: Req (r3, 1); C: Acq (r3, 1)
c) (0.5 pt) Is it possible that the following situation occurs:
3. B waits on r3 while there is an r3 resource available. If yes, give an action sequence; if no, give an argument.
2. (1.0) A RAID consisting of n disks uses a four-bit error correction code for each 1024-byte disk block. The codes are spread over the n disks such that disk i holds the codes for disk (i+1) modulo n.
a) Determine what fraction of the total disk space is taken up by the error codes.

b) Does this correspond to one of the given RAID levels? Explain your answer.

3. A given file system uses a 3-level hierarchy for storing files on a disk. File descriptors take 256 bytes, disk blocks are 1024 bytes and numbered consecutively, and disk block references are 8 bytes.
a) (0.25) How much information is needed in the descriptor for the 3-level hierarchy?
b) (0.25) What is the maximum file size?

c) (0.5) Is it possible to access small files in at most one disk access (not counting the disk access required to retrieve the descriptor)? If yes, explain, if not, propose alternatives (at least 1) to make this possible.

d) (1.0) Consider the call sequence: seek (fd, x); read (fd, buffer, len). Here, fd is a reference to an open file, the seek sets the pointer for the subsequent read and the read reads len bytes from fd into buffer. Describe in pseudo code how this is executed for this 3-level hierarchy. You may introduce freely any elements in fd to store state.
Answers

[image: image1]
(a)

[image: image2]

(b)

[image: image3]
[image: image4]

(c)

(d)

[image: image5]

 (d)

1.a Figure (a) above

1.b.1 After the four actions we have the figure (b) above. C is still open, hence A can finish as well. It is enough to look at this final situation since there are no releases in between.

1.b.2 After the first two actions we have figure (c). No problems since B is still open and reduction remains possible. After the second pair of actions we have figure (d). Now there is no open process, hence this cannot be allowed.

1.c Yes. Execute, after the given initialization also C: Req (r1, 1); C: Acq(r1, 1) (figure (e)). Subsequently, B: Req(r3, 1) will block.
2.

a. 4/(1024*8+4) * 100% (0.049%)
b. Not really. The error correction code in level 2 is stored on a fixed disk following the other codes. Also, this error code is made based upon striping. Level 5 looks alike it; however, there we have a parity of a sequence of blocks, not an error code of a single block. Also, the order is different.
3.

a. Just the 8-byte reference for the first indirection block will do. Note that 32 references is not possible, it would leave no space for other parts of the descriptor.
b. 128 references per block. Hence: 1st level 128, second level: 128x128; 3rd level: 128x128x128, a total of references to 2097152 references to blocks, hence 2097152Kbytes. (2^31 = (2^7)^3*1024)
c. No, each file needs the entire hierarchy to be obtained, hence at least three blocks before the actual data block can be accessed. Solution could be an incremental scheme or to use a part of the descriptor data to store small files. These solution would of course deviate from the 3-level hierarchy.
d. Crucial elements here were a) that it is recognized that an index in a file will define primary, secondary and tertiary indexes in diskblocks as well as an offset and b) that diskblocks must be retrieved before they can be indexed.
index = | primary | secondary | tertiary | offset

 7 bits 7 bits 7 bits 10 bits

The respectives values are computed by repeated mod/div calculations. We have been looking mainly for these two elements, in the exam.

A solution is as follows.

Consider an open file with reference fd .

This file has an entry OFT[fd] in the open file table.

Assume that this entry contains the following information:

1. fdnr :
the (inode) number of the file descriptor

2. pos :
the logical file position.

 This position can be divided into

 bn : the (logical or file) block number, and

 bi :
the block index (offset in the block)
 For the given 3-level hierarchy we have

 pos = bi + 1024*bn

 0 <= bi < 1024

 0 <= bn < 128*128*128

 The block number in its turn can be decomposed into

 fst :
index into the primary index table

 snd :
index into the secondary index table

 trd :
index into the tertiary index table

 We have

 bn = trd + 128*(snd + 128*fst)

 0 <= fst, snd, trd < 128

3. cur :
a pointer to a kernel buffer in main memory

that contains a block of fd (usually block bn)

With this data-structure in place we obtain the following code

procedure Seek (fd, x)

// Set the file position to x

// Note that a call of seek can move the file position

 outside the block held in buffer cur

var tmp;

begin with OFT[fd] do

 begin // pos := x;

 bi := x mod 1024; tmp := x div 1024 ;

 // bn := tmp

 trd := tmp mod 128; tmp := tmp div 128;

 snd := tmp mod 128; fst := tmp div 128

 end // with

end // Seek

procedure Read (fd, buffer, len)

var i;

begin i:= 0; UpdateCurrentBlock (fd);

 with OFT[fd] do

 begin while i < len do

 begin buffer[i] := cur[bi];

 i := i+1; Advance (fd);

 if bi = 0 and i < len then

 UpdateCurrentBlock (fd);

 end // while

 end // with

end // Read

procedure Advance (fd);

// Increments the file position by 1

begin with OFT[fd] do

 begin bi := (bi+1) mod 1024;

 if bi = 0 then begin

 trd := (trd+1) mod 128;

 if trd = 0 then begin

 snd := (snd+1) mod 128;

 if snd = 0 then fst := fst+1

 end end // then

 end // with

end // Advance

procedure UpdateCurrentBlock (fd)

// Establishes that buffer cur contains block bn

var root, tab[0..1023];

begin with OFT[fd] do

 begin // Get the primary index table

 // via the root pointer of the filedescriptor

 root := GetRoot (fdnr);

 ReadBlock (root, tab);

 // Get the secondary index table

 ReadBlock (tab[fst], tab);

 / Get the tertiary index table

 ReadBlock (tab[snd], tab);

 // Get block bn

 ReadBlock (tab[trd], cur);

 end // with

end // UpdateCurrentBlock

A call ReadBlock (dbn, buf) retreives a block of data from the

disk and places it in the buffer buf.

Here dbn is a DISK block number indicating the physical position

of the block on the disk.

Note that procedure Read has the responsibility to ensure that

the file position resides within the current block. This responsibility

can also be delegated to procedures Seek and Advance.

Finally, note that it is assumed that no index will get out of bound,

i.e., pos+len is at most the file size. Of course, a professional

code should check this. Also we use untyped variables.

C

C

B

A

r1

r2

r3

B

A

r11

r2

r3

C

B

A

r1

r2

r3

C

B

A

r1

r2

r3

C

B

A

r1

r2

r3

