Algorithms (2IL15) – Lecture 2

THE GREEDY METHOD
Optimization problems

- for each instance there are (possibly) multiple valid solutions
- goal is to find an optimal solution

• minimization problem:
 associate cost to every solution, find min-cost solution

• maximization problem:
 associate profit to every solution, find max-profit solution
Techniques for optimization

optimization problems typically involve making choices

backtracking: just try all solutions
- can be applied to almost all problems, but gives very slow algorithms
- try all options for first choice,
 for each option, recursively make other choices

greedy algorithms: construct solution iteratively, always make choice that seems best
- can be applied to few problems, but gives fast algorithms
- only try option that seems best for first choice (greedy choice), recursively make other choices

dynamic programming
- in between: not as fast as greedy, but works for more problems
Algorithms for optimization: how to improve on backtracking

for greedy algorithms

1. try to **discover** structure of optimal solutions: what **properties** do optimal solutions have?
 - what are the **choices** that need to be made?
 - do we have **optimal substructure**?
 - optimal solution = first choice + optimal solution for subproblem
 - do we have **greedy-choice** property for the first choice?

2. prove that optimal solutions indeed have these **properties**
 - prove optimal substructure and greedy-choice property

3. use these properties to **design an algorithm** and prove correctness
 - proof by induction (possible because optimal substructure)
Today: two examples of greedy algorithms

- Activity-Selection

- Optimal text encoding

```
“bla bla …”
010011000010000010011000010011000010011000010011000010011000010011000010011000010011000010011000010011000010011000010011000010011000010011000010011000010011000010011000010011000010011000010011000010011000010011000010011000010011000010011000010011000010011000010011000010011000010011000010011000010011000010011000010011000010011000010011000010011000010011000010011000010011000010011000010011000010011000010011000010011000010011000010011000010011000010011000010011000010011000010011000010011000010011000010011000010011000010011000010011000010011000010011000010011000010011000010011000010011000010011000010011000010011000010011000010011000010011000010011000010011000010011000010011000010011000010011000010011000010011000010011000010011000010011000010011000010011000010011000010011000010011000010011000010011000010011000010011000010011000010011000010011000010011000010011000010011000010011000010011000010011000010011000010011000010011000010011000010011000010011000010011000010011000010011000010011000010011000010011000010011000010011000010011000010011000010011000010011000010011000010011000010011000010011000010011000010011000010011000010011000010011000010011000010011000010011000010011000010011000010011000010011000010011000010011000010011000010011000010011000010011000010011000010011000010011000010011000010011000010011000010011000010011000010011000010011000010011000010011000010011000010011000010011000010011000010011000010011000010011000010011000010011000010011000010011000010011000010011000010011000010011000010011000010011000010011000010011000010011000010011000010011000010011000010011000010011000010011000010011000010011000010011000010011000010011000010011000010011000010011000010011000010011000010011000010011000010011000010011000010011000010011000010011000010011000010011000010011000010011000010011000010011000010011000010011000010011000010011000010011000010011000010011000010011000010011000010011000010011000010011000010011000010011000010011000010011000010011000010011000010011000010011000010011000010011000010011000010011000010011000010011000010011000010011000010011000010011
Activity-Selection Problem

Input: set $A = \{a_1, \ldots, a_n\}$ of $n$ activities 
for each activity $a_i$: start time $\text{start}(a_i)$, finishing time $\text{end}(a_i)$

Valid solution: any subset of non-overlapping activities

Optimal solution: valid solution with maximum number of activities
What are the choices? What properties does optimal solution have?

- for each activity, do we select it or not?
  better to look at it differently …
What are the choices? What properties does optimal solution have?

- What is first activity in optimal solution, what is second activity, etc.
  - do we have optimal substructure?
  - optimal solution = first choice + optimal solution for subproblem?

  yes!

  optimal solution = first activity + optimal selection from activities
  that do not overlap first activity
proof of optimal substructure

Lemma: Let $a_i$ be the first activity in an optimal solution OPT for $A$. Let $B$ be the set of activities in $A$ that do not overlap $a_i$. Let $S$ be an optimal solution for the set $B$. Then $S \cup \{a_i\}$ is an optimal solution for $A$.

Proof. First note that $S \cup \{a_i\}$ is a valid solution for $A$. Second, note that $\text{OPT} \setminus \{a_i\}$ is a subset of non-overlapping activities from $B$. Hence, by definition of $S$ we have $\text{size}(S) \geq \text{size} (\text{OPT} \setminus \{a_i\})$, which implies that $S \cup \{a_i\}$ is an optimal solution for $A$. □
What are the choices? What properties does optimal solution have?

- do we have greedy-choice property: can we select first activity “greedily” and still get optimal solution?

  yes!

  first activity = activity that ends first

  “greedy choice”
\[ A = \{ a_1, \ldots, a_n \} \]: set of \( n \) activities

**Lemma:** Let \( a_i \) be an activity in \( A \) that ends first. Then there is an optimal solution to the Activity-Selection Problem for \( A \) that includes \( a_i \).

**Proof.** General structure of all proofs for greedy-choice property:

- take optimal solution
- if OPT contains greedy choice, then done
- otherwise modify OPT so that it contains greedy choice, without decreasing the quality of the solution
Lemma: Let \( a_i \) be an activity in \( A \) that ends first. Then there is an optimal solution to the Activity-Selection Problem for \( A \) that includes \( a_i \).

Proof. Let OPT be an optimal solution for \( A \). If OPT includes \( a_i \) then the lemma obviously holds, so assume OPT does not include \( a_i \).

We will show how to modify OPT into a solution \( \text{OPT}^* \) such that

(i) \( \text{OPT}^* \) is a valid solution
(ii) \( \text{OPT}^* \) includes \( a_i \)
(iii) size(\( \text{OPT}^* \)) \( \geq \) size(\( \text{OPT} \))

Thus \( \text{OPT}^* \) is an optimal solution including \( a_i \), and so the lemma holds. To modify OPT we proceed as follows.
How to modify OPT?

replace first activity in OPT by greedy choice
Lemma: Let $a_i$ be an activity in $A$ that ends first. Then there is an optimal solution to the Activity-Selection Problem for $A$ that includes $a_i$.

Proof. [...] We show how to modify OPT into a solution OPT* such that

(i) OPT* is a valid solution
(ii) OPT* includes $a_i$
(iii) size(OPT*) ≥ size(OPT)

[...] To modify OPT we proceed as follows.

Let $a_k$ be activity in OPT ending first, and let OPT* = ( OPT \ {a_k} ) U {a_i}. Then OPT* includes $a_i$ and size(OPT*) = size(OPT).
We have end($a_i$) ≤ end($a_k$) by definition of $a_i$, so $a_i$ cannot overlap any activities in OPT \ {a_k}. Hence, OPT* is a valid solution.
And now the algorithm:

**Algorithm** *Greedy-Activity-Selection (A)*

1. if A is empty
2. then return A
3. else $a_i \leftarrow$ an activity from A ends first
4. $B \leftarrow$ all activities from A that do not overlap $a_i$
5. return \{a_i\} U *Greedy-Activity-Selection (B)*

**Correctness:**
- by induction, using optimal substructure and greedy-choice property

**Running time:**
- $O(n^2)$ if implemented naively
- $O(n)$ after sorting on finishing time, if implemented more cleverly
Today: two examples of greedy algorithms

- Activity-Selection

- Optimal text encoding

```
0100110000010000010011000001 ...
```

```
“bla bla …”
```

```
0100110000010000010011000001 ...
```
Optimal text encoding

Standard text encoding schemes: fixed number of bits per character

- ASCII: 7 bits (extended versions 8 bits)
- UCS-2 (Unicode): 16 bits

Can we do better using variable-length encoding?

Idea: give characters that occur frequently a short code and give characters that do not occur frequently a longer code
The encoding problem

**Input:** set $C$ of $n$ characters $c_1, \ldots, c_n$; for each character $c_i$ its frequency $f(c_i)$

**Output:** binary code for each character

\[ \text{code}(c_1) = 01001, \quad \text{code}(c_2) = 010, \ldots \quad \text{not a prefix-code} \]

Variable length encoding: how do we know where characters end?

\[ \text{text} = 0100101100 \ldots \quad \text{Does it start with } \text{code}(c_1) = 01001 \text{ or } \text{code}(c_2) = 010 \text{ or } \ldots ?? \]

**Use prefix-code:** no character code is prefix of another character code
Variable-length prefix encoding: can it help?

Text: “een□voordeel”

Frequencies: f(e)=4, f(n)=1, f(v)=1, f(o)=2, f(r)=1, f(d)=1, f(l)=1, f(□)=1

Fixed-length code:
e=000 n=001 □=010 r =100 d=101 l =110 □=111

Length of encoded text: 12 x 3 = 36 bits

Possible prefix code:
e=00 n=0110 □=0111 r =100 d=101 l=110 □=111

Length of encoded text: 4x2 + 2x4 + 6x3 = 34 bits
Representing prefix codes

Text: “een□voordeel”

Frequencies: \( f(e)=4, f(n)=1, f(v)=1, f(o)=2, f(r)=1, f(d)=1, f(l)=1, f(□)=1 \)

code:  \( e=00 \)  \( n=0110 \)  \( v=0111 \)  \( o=010 \)  \( r =100 \)  \( d=101 \)  \( l=110 \)  \( □=111 \)

representation is binary tree \( T \):

- one leaf for each character
- internal nodes always have two outgoing edges, labeled 0 and 1
- code of character: follow path to leaf and list bits

codes represented by such trees are exactly the “non-redundant” prefix codes
Representing prefix codes

**Text**: “een □ voordeel”

Frequencies: \( f(e)=4, f(n)=1, f(v)=1, f(o)=2, f(r)=1, f(d)=1, f(l)=1, f(□)=1 \)

code: \( e=00 \)  \( n=0110 \)  \( v=0111 \)  \( o=010 \)  \( r =100 \)  \( d=101 \)  \( l=110 \)  \( □=111 \)

Cost of encoding represented by \( T \):

\[
\sum_i f(c_i) \cdot \text{depth}(c_i)
\]
Designing greedy algorithms

1. try to **discover** structure of optimal solutions: what **properties** do optimal solutions have?
   - **what are the choices** that need to be made?
   - do we have **optimal substructure**?
     - optimal solution = first choice + optimal solution for subproblem
   - do we have **greedy-choice** property for the first choice?

2. **prove** that optimal solutions indeed have these **properties**
   - prove optimal substructure and greedy-choice property

3. use these properties to **design an algorithm** and prove correctness
   - proof by induction (possible because optimal substructure)
Bottom-up construction of tree:
start with separate leaves, and then “merge” $n-1$ times until we have the tree

choices: which subtrees to merge at every step

we do not have to merge adjacent leaves
Bottom-up construction of tree:
start with separate leaves, and then “merge” \( n-1 \) times until we have the tree

**choices:** which subtrees to merge at every step

Do we have optimal substructure?

Do we even have a problem of the same type?

Yes, we have a subproblem of the same type: after merging, replace merged leaves \( c_i, c_k \) by a single leaf \( b \) with \( f(b) = f(c_i) + f(c_k) \)

(other way of looking at it: problem is about merging weighted subtrees)
Lemma: Let $c_i$ and $c_k$ be siblings in an optimal tree for set $C$ of characters. Let $B = (C \setminus \{c_i, c_k\}) \cup \{b\}$, where $f(b) = f(c_i) + f(c_k)$. Let $T_B$ be an optimal tree for $B$. Then replacing the leaf for $b$ in $T_B$ by an internal node with $c_i, c_k$ as children results in an optimal tree for $C$.

Proof. Do yourself.
Bottom-up construction of tree:
start with separate leaves, and then “merge” \( n-1 \) times until we have the tree

choices: which subtrees to merge at every step

Do we have a greedy-choice property?
Which leaves should we merge first?

Greedy choice: first merge two leaves with smallest character frequency
Lemma: Let $c_i, c_k$ be two characters with the lowest frequency in $C$. Then there is an optimal tree $T_{OPT}$ for $C$ where $c_i, c_k$ are siblings.

Proof. Let $OPT$ be an optimal tree $T_{OPT}$ for $C$. If $c_i, c_k$ are siblings in $T_{OPT}$ then the lemma obviously holds, so assume this is not the case. We will show how to modify $T_{OPT}$ into a tree $T^*$ such that

(i) $T^*$ is a valid tree
(ii) $c_i, c_k$ are siblings in $T^*$
(iii) $\text{cost}(T^*) \leq \text{cost}(T_{OPT})$

Thus $T^*$ is an optimal tree in which $c_i, c_k$ are siblings, and so the lemma holds. To modify $T_{OPT}$ we proceed as follows.
How to modify $T_{OPT}$?

- take a deepest internal node $v$
- make $c_i, c_k$ children of $v$ by swapping them with current children (if necessary)

Conclusion: $T^*$ is valid tree where $c_i, c_k$ are siblings and cost($T^*$) $\leq$ cost($T_{OPT}$).

\[
\text{change in cost due to swapping } c_i \text{ and } c_s \\
\text{cost (}T_{OPT}\text{) – cost (}T^*\text{)} \\
= f(c_s) \cdot (d_2 - d_1) + f(c_i) \cdot (d_1 - d_2) \\
= (f(c_s) - f(c_i)) \cdot (d_2 - d_1) \\
\geq 0
\]
Algorithm Construct-Huffman-Tree \((C: \text{set of } n \text{ characters})\)

1. \textbf{if} \(|C| = 1\)
2. \textbf{then return} a tree consisting of single leaf, storing the character in \(C\)
3. \textbf{else} \(c_i, c_k \leftarrow \text{two characters from } C \text{ with lowest frequency}\)
4. Remove \(c_i, c_k\) from \(C\), and replace them by a new character \(b\) with \(f(b) = f(c_i) + f(c_k)\). Let \(B\) denote the new set of characters.
5. \(T_B \leftarrow \text{Construct-Huffman-Tree}(B)\)
6. Replace leaf for \(b\) in \(T_B\) with internal node with \(c_i, c_k\) as children.
7. Let \(T\) be the new tree.
8. \textbf{return} \(T\)

Correctness:
- by induction, using optimal substructure and greedy-choice property

Running time:
- \(O(n^2)\) ?!
- \(O(n \log n)\) if implemented smartly (use heap)
- Sorting + \(O(n)\) if implemented even smarter (hint: 2 queues)
Summary

- greedy algorithm: solves optimization problem by trying only one option for first choice (the greedy choice) and then solving subproblem recursively
- need: optimal substructure + greedy choice property
- proof of greedy-choice property: show that optimal solution can be modified such that it uses greedy choice