ALL-PAIRS SHORTEST PATHS

\[
\begin{pmatrix}
a_{i,1} & \ldots & a_{i,n}
\end{pmatrix}
\times
\begin{pmatrix}
w_{1,k} \\
\vdots \\
w_{n,k}
\end{pmatrix}
=
\begin{pmatrix}
b_{i,k}
\end{pmatrix}
\]
Previous lecture: Single-Source Shortest Paths

Dijkstra’s algorithm
- works only for non-negative edge weights
- running time $\Theta(|V| \log |V| + |E|)$

Bellman-Ford algorithm
- can handle negative edge weights, works even for negative-weight cycles
- running time $\Theta(|V| \cdot |E|)$

Today: the All-Pairs Shortest-Path Problem
All-Pairs Shortest Paths

If we only have non-negative edge-weights:

Run Dijkstra’s algorithm |V| times, once with each vertex as source

- running time $\Theta (|V|^2 \log |V| + |V| \cdot |E|)$

What to do if we also have negative edge weights?
adjacency-matrix representation

\[
M[i,j] = \begin{cases}
0 & \text{if } i = j \\
 w(v_i,v_j) & \text{if } i \neq j \text{ and edge } (v_i,v_j) \text{ exists; } w(v_i,v_j) \text{ is weight of } (v_i,v_j) \\
\infty & \text{if edge } (v_i,v_j) \text{ does not exist}
\end{cases}
\]
Warm-up/Recap: Bellman-Ford via dynamic programming
5 steps in designing dynamic-programming algorithms

1. define subproblems

2. guess first choice

3. give recurrence for the value of an optimal solution
 - define subproblem in terms of a few parameters
 - define variable $m[..] = \text{value of optimal solution for subproblem}$
 - relate subproblems by giving recurrence for $m[..]$

4. algorithm: fill in table for $m[..]$ in suitable order (or recurse & memoize)

5. solve original problem

Running time: #subproblems * time/subproblem
Correctness: (i) correctness of recurrence: relate OPT to recurrence
(ii) correctness of algorithm: induction using (i)
Single-Source Shortest Paths: structure of optimal solution

$V = \{ v_1, v_2, \ldots, v_n \}$ $s = v_1$

Subproblem:
For each vertex v_i compute shortest path from s to v_i with at most m edges

Define variable:
$L(i,m)$ = length of shortest path from s to v_i with at most m edges

Recursive formula:
$L(i,m) = \begin{cases}
0 & \text{if } i = 1 \text{ and } m = 0 \\
\infty & \text{if } 1 < i \leq n - 1 \text{ and } m = 0 \\
\min \{ L(j,m-1) + w(v_j, v_i) \} & \text{if } 0 < m \leq n - 1
\end{cases}$

Note: here adjacency matrix, but Bellman-Ford uses adjacency list
Single-Source Shortest Paths: dynamic-programming solution

Recursive formula:

\[L(i,m) = \begin{cases}
0 & \text{if } i = 1 \text{ and } m = 0 \\
\infty & \text{if } 1 < i \leq n - 1 \text{ and } m = 0 \\
\min \{ L(j,m-1) + w(v_j, v_i) \} & \text{if } 0 < m \leq n - 1
\end{cases} \]

Solution to the original problem is in the last column.
Single-Source Shortest Paths: dynamic-programming solution

Recursive formula:
\[
L(i,m) = \begin{cases}
0 & \text{if } i = 1 \text{ and } m = 0 \\
\infty & \text{if } 1 < i \leq n - 1 \text{ and } m = 0 \\
\min \left\{ L(j,m-1) + w(v_j, v_i) \right\} & \text{if } 0 < m \leq n - 1 \\
1 \leq j \leq n
\end{cases}
\]

SSSP-DynamicProgramming (G,s)

// G = (V,E) with V = \{ v_1, v_2, \ldots, v_n \} and s = v_1

1. \(L[1,0] \leftarrow 0 \)
2. for \(i \leftarrow 2 \) to \(n \) do \(L[i,0] \leftarrow \infty \)
3. for \(m \leftarrow 1 \) to \(n - 1 \)
4. do for \(i \leftarrow 1 \) to \(n \)
5. do \(L[i,m] \leftarrow \min \{ L(j,m-1) + w(v_j, v_i) \} \) for all \(1 \leq j \leq n \)

after algorithm: \(L[i,n-1] = \delta (v_1,v_i) \) for all \(i \)

running time: \(O(n^3) \)
storage: \(O(n^2) \)

Note: Bellman-Ford actually runs in \(O(|V||E|) \) time using \(O(|V|) \) space.

How to check if a negative-weight cycle is reachable?
Now adapt to all-pairs shortest paths

\[V = \{ v_1, v_2, \ldots, v_n \} \]

Subproblem:
For each pair \(v_i, v_k \) compute shortest path from \(v_i \) to \(v_k \) with at most \(m \) edges

Define variable:
\(L(i,k,m) = \text{length of shortest path from } v_i \text{ to } v_k \text{ with at most } m \text{ edges} \)

Recursive formula:
\[
L(i,k,m) = \begin{cases}
0 & \text{if } i = k \text{ and } m = 0 \\
\infty & \text{if } i \neq k \text{ and } m = 0 \\
\min \{ L(i,j,m-1) + w(v_j, v_k) \} & \text{if } 0 < m \leq n - 1 \\
\end{cases}
\]
All-Pairs Shortest Paths: dynamic-programming solution

Recursive formula:

\[
L(i,k,m) = \begin{cases}
0 & \text{if } i = k \text{ and } m = 0 \\
\infty & \text{if } i \neq k \text{ and } m = 0 \\
\min \{ L(i,j,m-1) + w(v_j, v_k) \} & \text{if } 0 < m \leq n - 1 \\
1 \leq j \leq n
\end{cases}
\]

Slow-All-Pairs-Shortest-Paths (G,s)

1. \textbf{for} \(i \leftarrow 1 \) \textbf{to} \(n \)
2. \hspace{1em} \textbf{do for} \(k \leftarrow 1 \) \textbf{to} \(n \)
3. \hspace{2em} \textbf{do} \(L[i,k,0] \leftarrow \infty \)
4. \hspace{1em} \textbf{for} \(i \leftarrow 1 \) \textbf{to} \(n \) \textbf{do} \(L[i,i,0] \leftarrow 0 \)
5. \hspace{1em} \textbf{for} \(m \leftarrow 1 \) \textbf{to} \(n - 1 \)
6. \hspace{2em} \textbf{do for} \(i \leftarrow 1 \) \textbf{to} \(n \)
7. \hspace{3em} \textbf{do for} \(k \leftarrow 1 \) \textbf{to} \(n \)
8. \hspace{4em} \textbf{do} \(L[i,k,m] \leftarrow \min \{ L(i,j,m-1) + w(v_j, v_k) \} \)

running time: \(O(n^4) \)
storage: \(O(n^3) \)

NB: still need to check for negative-weight cycles
All-Pairs Shortest Paths: slightly different formulation

New recursive formula: \(L(i,k,m) \) =

\[
\begin{cases}
 w(v_j, v_k) & \text{if } m = 1 \\
 \min \{ L(i,j,m-1) + w(v_j, v_k) \} & \text{if } 1 < m \leq n - 1 \\
 1 \leq j \leq n
\end{cases}
\]

Slow-All-Pairs-Shortest-Paths (\(G,s \))

1. \(L \leftarrow W \) // \(W = \) matrix of edge weights: \(W[i,j] = w(v_j, v_j) \)
2. \(\text{for } m \leftarrow 2 \text{ to } n-1 \)
3. \(\text{do } L \leftarrow \text{Extend-Shortest-Paths} (L, W) \)

Extend-Shortest-Paths (\(L,W \))

1. \(\text{Let } B \text{ be a new } n \times n \text{ matrix} \)
2. \(\text{for } i \leftarrow 1 \text{ to } n \)
3. \(\text{do for } k \leftarrow 1 \text{ to } n \)
4. \(\text{do } B[i,k] \leftarrow \min \{ L(i,j) + w(v_j, v_k) \} \)
5. \(\text{return } B \)
All-Pairs Shortest Paths: relation to matrix multiplication

Recursive formula:

\[L(i,k,m) = \begin{cases}
 w(v_j, v_k) & \text{if } m = 1 \\
 \min \{ L(i,j,m-1) + w(v_j, v_k) \} & \text{if } 1 < m \leq n - 1 \\
 1 \leq j \leq n
\end{cases} \]

\[A = \text{matrix with } a_{i,k} = L[i,k,m-1] = \text{min length of path with } m-1 \text{ edges from } v_i \text{ to } v_k \]

\[W = \text{matrix such that } w_{i,k} = w(v_i, v_k) = \text{weight of edge } w(v_i, v_k) \]

\[B = \text{matrix with } b_{i,k} = L[i,k,m] = \text{min length of path with } m \text{ edges from } v_i \text{ to } v_k \]

\[
\begin{pmatrix}
a_{i,1} & \ldots & a_{i,n}
\end{pmatrix}
\begin{pmatrix}
\vdots \\
w_{1,k} \\
w_{n,k}
\end{pmatrix}
=
\begin{pmatrix}
\vdots \\
b_{i,k}
\end{pmatrix}
\]

\[b_{i,k} = \min_{1 \leq j \leq n} (a_{i,k} + w_{i,k}) \]

replacing "min" by "\(\sum \)" and "+" by "\(\cdot \)" gives normal matrix multiplication
Let’s change notation for the matrices:

\[D_{(m)} = \text{matrix with } d_{i,k} = L[i,k,m] = \text{min length of path with } m \text{ edges from } v_i \text{ to } v_k \]

\[W = \text{matrix such that } w_{i,k} = w(v_i, v_k) = \text{weight of edge } w(v_i, v_k) \]

Then

\[D_{(m)} = D_{(m-1)} \otimes W \]

\[= (D_{(m-2)} \otimes W) \otimes W \]

\[= D_{(1)} \otimes W \otimes W \otimes \ldots \otimes W \]

\[= W^m \]

\(\otimes \) is associative
Conclusion

- Solving the All-Pairs Shortest Paths Problem is equivalent to computing the matrix product W^{n-1} with the \otimes-multiplication operator.

- Extend-Shortest-Paths (L, W) computes matrix “product” $L \otimes W$

We can use this insight to speed up the algorithm:

- repeated squaring: $W \rightarrow W^2 = W \otimes W \rightarrow W^4 = W^2 \otimes W^2 \rightarrow \ldots$

$W^m = W^{n-1}$ for all $m \geq n-1$ if there are no negative-weight cycles
New algorithm

Faster-All-Pairs-Shortest-Paths (W)

\[W \] is matrix with edge weights

1. \(L \leftarrow W; \quad n \leftarrow \text{number of rows of } W \) \hspace{1cm} \(\text{// } n = |V| \)
2. \(m \leftarrow 1 \)
3. \textbf{while} \(m < n-1 \)
4. \hspace{1cm} \textbf{do} \hspace{0.5cm} \(\text{// Invariant: } L = W^m \)
5. \hspace{1cm} \(L \leftarrow \text{Extend-Shortest-Paths} \left(L, L \right) \) \hspace{1cm} \(\text{// } L \leftarrow L \otimes L \)
6. \hspace{1cm} \(m \leftarrow 2m \)
7. \hspace{1cm} \textbf{return} \(L \)

running time = \(O \left(n^3 \right) \times \text{number of times line 5 is executed} \)

= \(O \left(n^3 \log n \right) \)

… still need to check for negative-weight cycles.
Theorem: The All-Pairs Shortest-Paths problem for a graph $G=(V,E)$ with (possibly negative) edge weights can be solved in $O(|V|^3 \log |V|)$ time.

PS There is a different algorithm – the Floyd-Warshall algorithm – that is also based on dynamic programming, but that runs in $O(|V|^3)$ time.
An alternative approach: Johnson’s algorithm

Suppose we want to solve a certain graph problem
- we have an algorithm ALG that only works for certain types of graphs
- we want to develop an algorithm for another type of graph

Possible approaches

A. try to adapt ALG

B. try to modify the input graph G into a different graph \tilde{G} such that
 i. ALG can be applied to \tilde{G}
 ii. we can easily compute the solution for G from the solution for \tilde{G}
Recall:

If we only have non-negative edge-weights, we can run Dijkstra’s algorithm $|V|$ times, once with each vertex as source

- running time $\Theta(|V|^2 \log |V| + |V| \cdot |E|)$

This is $O(|V|^3)$ in the worst case, so faster than previous approach.

Idea:

modify G so that all weights become non-negative, then use approach above

- need to add something to the edge weights to make them non-negative
- but shortest paths should stay the same
$G = (V,E)$ weighted graph

$h: V \rightarrow \mathbb{R}$ function assigning a real number to each vertex v in V

G is the same graph as G, but with edge weights $w(u,v) = w(u,v) + h(u) - h(v)$

Lemma

(i) any shortest path in G is a shortest path in \overline{G}, and vice versa

(ii) G has negative-weight cycle iff G has negative-weight cycle

Proof. Consider any path v_1, v_2, \ldots, v_k in G

$$w(v_2, v_3) + h(v_2) - h(v_3)$$

$$w(v_{k-1}, v_k) + h(v_{k-1}) - h(v_k)$$

length of path in \overline{G} = (length of path in G) + $h(v_1) - h(v_k)$.

$$w(v_1, v_2) + h(v_1) - h(v_2)$$
G=(V,E) weighted graph

\(h: V \rightarrow \mathbb{R} \) function assigning a real number to each vertex \(v \) in \(V \)

\(G \) is same graph as \(G \), but with edge weights
\[
\overline{w}(u,v) = w(u,v) + h(u) - h(v)
\]

Lemma
(i) any shortest path in \(G \) is a shortest path in \(\overline{G} \), and vice versa
(ii) \(G \) has negative-weight cycle iff \(\overline{G} \) has negative-weight cycle

need to find function \(h \) that makes all edge weights non-negative

Observation
- \(w(u,v) \) non-negative \(\iff \) \(h(v) - h(u) \leq w(u,v) \)
- Let \(s \) be any vertex that can reach \(u \). Then \(\delta(s,v) \leq \delta(s,u) + w(u,v) \)
need to find function h that makes all edge weights non-negative

Observation

- $w(u,v)$ non-negative $\iff h(u) - h(v) \geq w(u,v)$
- Let s be any vertex that can reach u. Then $\delta(s,v) \leq \delta(s,u) + w(u,v)$

Idea: compute $\delta(s,u)$ for all u, for suitable source s; set $h(u) = \delta(s,u)$

Add extra vertex s, with zero-weight edge to all other vertices.
Johnson \((G,w)\)

// Modify \(G\) into graph \(G^*\) by adding vertex \(s\) with edges to all other vertices
- \(V^* \leftarrow V \cup \{s\}\)
- \(E^* \leftarrow E \cup \{(s,u) : u \in V\};\) all new edges \((s,u)\) get weight 0

// Use \(G^*\) to transform \(G\) to graph \(G\) that has no negative edge weights
3. Run Bellman-Ford\((G^*,s)\) to compute distances \(\delta(s,u)\) for all \(u \in V\)
4. if Bellman-Ford reports that \(G^*\) has negative-weight cycle
5. then report that \(G\) has negative-weight cycle
6. else Let \(G=(V,E)\) be the same graph as \(G\),
 but with edge weights \(w(u,v) = w(u,v) + \delta(s,u) - \delta(s,v)\)
 \(\backslash\) and use \(G\) to solve the problem
7. for each vertex \(u \in V\) \(\backslash\) compute distances to all other vertices
8. do Run Dijkstra\((G,u)\) to compute distances \(\bar{\delta}(u,v)\)
9. For all \(v\), set \(\delta(u,v) \leftarrow \bar{\delta}(u,v) - \delta(s,u) + \delta(s,v)\)
Theorem: The All-Pairs Shortest-Paths problem for a graph $G=(V,E)$ with (possibly negative) edge weights can be solved in $O(|V|^2 \log |V| + |V| \cdot |E|)$ time.
All-Pairs Shortest Paths: Summary

Dynamic-programming algorithm
- running time $\Theta(\lvert V \rvert^4)$
- connection to matrix-multiplication
- improved version (repeated squaring) runs in $\Theta(\lvert V \rvert^3 \log \lvert V \rvert)$ time

Floyd-Warshall: different dynamic-programming algorithm running in $\Theta(\lvert V \rvert^3)$ and (also) very simple to implement

Johnson’s algorithm: reweighting
- modify graph to make all edge-weights non-negative
- then run Dijkstra’s algorithm $\lvert V \rvert$ times
- running time $\Theta(\lvert V \rvert^2 \log \lvert V \rvert + \lvert V \rvert \cdot \lvert E \rvert)$