Part II of the course: optimization problems on graphs

single-source shortest paths
Find shortest path from source vertex to all other vertices

all-pairs shortest paths
Find shortest paths between all pairs of vertices

maximum flow
Find maximum flow from source vertex to target vertex

maximum bipartite matching
Find maximum number of disjoint pairs of vertices with edge between them
Single-Source Shortest Paths

Bellman-Ford algorithm
- can handle negative edge weights, works even for negative-weight cycles
- running time $\Theta(|V| \cdot |E|)$

Dijkstra’s algorithm
- works only for non-negative edge weights
- running time $\Theta(|V| \log |V| + |E|)$

All-Pairs Shortest Paths

Dynamic-programming algorithms
- connection to matrix-multiplication
- improved version (repeated squaring) runs in $\Theta(|V|^3 \log |V|)$ time
- different subproblems give simple $\Theta(|V|^3)$-time algorithm (Floyd-Warshall)

Johnson’s algorithm: reweighting
- modify graph to make all edge-weights non-negative
- then run Dijkstra’s algorithm $|V|$ times
- running time $\Theta(|V|^2 \log |V| + |V| \cdot |E|)$
The maximum-flow problem

How much flow we can push through the network?

- edges are directed and have a maximum capacity
- source is generating the flow, sink is consuming it
- all flow arriving at a node must also leave the node, except at sink
Flow network: directed graph \(G = (V, E) \), where

- each edge \((u,v)\) in \(E\) has a capacity \(c(u,v) \geq 0\)
 - define \(c(u,v)=0\) if \((u,v)\) not in \(E\)
- there are two special nodes in \(V\): the source \(s\) and the sink \(t\)
- if \((u,v)\) in \(E\) then \((v,u)\) not in \(E\)

 trick: insert node on edge
- Assume that any node \(u\) can be reached from \(s\) and can reach \(t\)

Note: \(G\) can have cycles
Flow: function $f : V \times V \rightarrow \mathbb{R}$ satisfying

- **capacity constraint**: $0 \leq f(u,v) \leq c(u,v)$ for all nodes u,v

 (Hence, $f(u,v) = 0$ if edge (u,v) does not exist.)

- **flow conservation**: for all nodes $u \neq s, t$ we have $\text{flow in} = \text{flow out}$:

 $$\sum_{v \in V} f(v,u) = \sum_{v \in V} f(u,v)$$

value of flow: $|f| = \sum_{v \in V} f(s,v) - \sum_{v \in V} f(v,s)$
Flow: function \(f : V \times V \rightarrow \mathbb{R} \) satisfying

- capacity constraint: \(0 \leq f(u,v) \leq c(u,v) \) for all nodes \(u, v \)
 (Hence, \(f(u,v) = 0 \) if edge \((u,v)\) does not exist.)

- flow conservation: for all nodes \(u \neq s, t \) we have flow in = flow out:
 \[
 \sum_{v \in V} f(v,u) = \sum_{v \in V} f(u,v)
 \]

value of flow: \(|f| = \sum_{v \in V} f(s,v) - \sum_{v \in V} f(v,s) \)

Can there be flow if all outgoing edges from the source have zero flow?

\[
\begin{array}{c}
\text{s} & \overset{0/2}{\rightarrow} & \overset{2/2}{\rightarrow} & \overset{0/3}{\rightarrow} & \text{t} \\
\overset{2/3}{\leftarrow} & \overset{2/5}{\rightarrow} & \overset{2/5}{\rightarrow}
\end{array}
\]
Idea for computing max flow incrementally

- start with zero flow
- repeat until stuck
 - find path from s to t along which we can increase the flow
 - increase flow along the path

Total flow: 0
Idea for computing max flow incrementally

- start with zero flow
- repeat until stuck
 - find path from s to t along which we can increase the flow
 - increase flow along the path

Total flow: 0 + 2
Idea for computing max flow incrementally

- start with zero flow
- repeat until stuck
 - find path from s to t along which we can increase the flow
 - increase flow along the path

Total flow: $0 + 2$
Idea for computing max flow incrementally

- start with zero flow
- repeat until stuck
 - find path from s to t along which we can increase the flow
 - increase flow along the path

Total flow: $0 + 2 + 5$
Idea for computing max flow incrementally

- start with zero flow
- repeat until stuck
 - find path from s to t along which we can increase the flow
 - increase flow along the path

```
0 + 2 + 5
```
Idea for computing max flow incrementally

- start with zero flow
- repeat until stuck
 - find path from s to t along which we can increase the flow
 - increase flow along the path

trick: decrease flow along edge = send flow along reverse edge
Idea for computing max flow incrementally

- start with zero flow
- repeat until stuck
 - find path from s to t along which we can increase the flow
 - increase flow along the path

Trick: decrease flow along edge = send flow along reverse edge

Total flow: $0 + 2 + 5 + 1$
The Ford-Fulkerson method

work with residual network G_f

- original edges
- reverse edges: sending flow along such an edge

 = decreasing flow along original edge

Ford-Fulkerson-Method (G, s, t)

1. Initialize flow: set $f(u,v) = 0$ for each pair (u,v) in $V \times V$
2. **while** there is an augmenting path p in the residual network G_f
3. **do** increase flow by augmenting flow along p
4. **return** f
- \(G = (V,E) \) is flow network with source \(s \) and sink \(t \)
- \(f = \) flow on \(G \)

Residual capacity of pair of vertices \(u,v \) in \(G \) (for the given flow \(f \))

\[
c_f(u,v) = \begin{cases}
 c(u,v) - f(u,v) & \text{if } (u,v) \text{ in } E \quad \text{// original edge} \\
 f(v,u) & \text{if } (v,u) \text{ in } E \quad \text{// reverse edge} \\
 0 & \text{otherwise}
\end{cases}
\]

well defined because \((u,v) \) and \((v,u) \) cannot both be in \(E \)

![Diagram](image-url)
Residual network of network G with given flow f

network $G_f = (V, E_f)$ where $E_f = \{ (u,v) \in V \times V : c_f(u,v) > 0 \}$

- (u,v) in E: E_f can contain (u,v) and/or (v,u)
- (u,v) not in E and (v,u) not in E: (u,v) and (v,u) not in E_f either

![Diagram of residual network]
Let’s look at earlier example, where we had to decrease flow along some edge.
flow in residual network G_f

- should satisfy residual capacity constraints
- for each vertex $\neq s,t$: flow in = flow out

We will only use flows along **augmenting path** p = simple s-to-t path in G_f

residual capacity $c_f(p)$ of p = amount of flow we can push along p

$= \min \{ c_f(u,v): (u,v) \text{ is an edge of } p \}$
Augmenting flow \(f \) by flow along simple \(s \)-to-\(t \) path \(p \) in \(G_f \)

\[
\text{for each edge } (u,v) \text{ on the augmenting path } p \\
\text{do } \begin{cases} \text{if } (u,v) \in E & \text{then increase } f(u,v) \text{ by } c_f(p) \ \\
\text{else} & \text{decrease } f(v,u) \text{ by } c_f(p) \end{cases}
\]
Lemma: Augmenting flow along simple s-to-t path p gives valid flow in G whose value is $(\text{old flow value}) + \text{residual capacity } c_f(p)$.

Proof. Must show:
- new flow satisfies capacity constraint: $0 \leq f(u,v) \leq c(u,v)$
- new flow satisfies: flow in = flow out
- new flow value = $(\text{old flow value}) + \text{residual capacity } c_f(p)$.

$$c_f(u,v) = \begin{cases}
 c(u,v) - f(u,v) & \text{if } (u,v) \text{ in } E \\
 f(v,u) & \text{if } (v,u) \text{ in } E \\
 0 & \text{otherwise}
\end{cases}$$
Ford-Fulkerson (G, s, t)

1. Initialize flow: set $f(u,v) = 0$ for each pair (u,v) in $V \times V$
2. Construct residual network G_f
3. while there is an augmenting path p in the residual network G_f
4. do // increase flow by augmenting flow along p
5. $c_f(p) \leftarrow$ residual capacity of the path p
6. for each edge (u,v) on the path p
7. do if (u,v) in E
8. then $f(u,v) \leftarrow f(u,v) + c_f(p)$
9. else $f(v,u) \leftarrow f(v,u) - c_f(p)$
10. Update the residual network G_f
11. return f

need algorithm to find path between two given vertices; for the moment we assume we just find any path
Properties of Ford-Fulkerson:

- Invariant: flow is valid
- Flow increases at each iteration

Questions:

- Are we sure it always terminates?

 not guaranteed if capacities are irrational and augmenting paths are chosen in the “wrong” way

- How many iterations before we get stuck (no augmenting path) ?

 more next lecture

- Are we sure we have max flow when we get stuck ?

 want to prove: no augmenting path \rightarrow max flow
Cuts of flow network $G = (V,E)$

$\text{cut (}S, T\text{)} = \text{partitioning of } V \text{ into subsets } S \text{ and } T, \text{ with } s \text{ in } S \text{ and } t \text{ in } T$

flow $f(S, T)$ across cut $(S, T) = \sum_{u \in S} \sum_{v \in T} f(u, v) - \sum_{u \in S} \sum_{v \in T} f(v, u)$

$= (2 + 2 + 3 + 1) - (1 + 1) = 6$

capacity $c(S, T)$ of cut $(S, T) = \text{max flow across the cut}$

$= \sum_{u \in S} \sum_{v \in T} c(u, v) = (2 + 3 + 3 + 5) = 13$
Lemma: Flow across any cut is the same, and equals the value of the flow.

Proof. See book.
Lemma: Flow across any cut is the same, and equals the value of the flow.

Note: capacity of cuts is not necessarily the same

minimum cut = cut whose capacity is minimum

Corollary: Maximum flow cannot be more than capacity of minimum cut.

Proof. Consider flow f of maximum value

value of f = flow of f across any cut

= flow of f across minimum cut

\leq capacity of minimum cut
Corollary: Maximum flow cannot be more than capacity of minimum cut.

Max-flow min-cut Theorem: Let f be a flow in a flow network G. Then the following conditions are equivalent:

(i) f is a maximum flow in G

(ii) residual network G_f contains no augmenting path

(iii) there is a cut (S,T) with $|f| = c(S,T)$

Combine (iii) with corollary: maximum flow = capacity of minimum cut
Max-flow min-cut Theorem: Let f be a flow in a flow network G. Then the following conditions are equivalent:

(i) f is maximum flow in G

(ii) residual network G_f contains no augmenting path

(iii) there is a cut (S,T) with $|f| = c(S,T)$

Proof.

(i) \iff (ii):

If there were an augmenting path, we could increase the flow.
Max-flow min-cut Theorem: Let f be a flow in a flow network G. Then the following conditions are equivalent:

(i) f is maximum flow in G
(ii) residual network G_f contains no augmenting path
(iii) there is a cut (S,T) with $|f| = c(S,T)$

Proof.
(iii) \implies (ii):
Define: $S =$ set of all vertices that can be reached from s in G_f
$T = V - S$

- Consider edge (u,v) from S to T:
 $$f(u,v) = c(u,v) \text{ otherwise } (u,v) \in E_f \text{ and } v \text{ is reachable}$$
- Consider edge (v,u) from T to S:
 $$f(v,u) = 0 \text{ otherwise } (u,v) \in E_f \text{ and } v \text{ is reachable}$$

Hence, $|f| = c(S,T)$
Max-flow min-cut Theorem: Let f be a flow in a flow network G. Then the following conditions are equivalent:

(i) f is maximum flow in G

(ii) residual network G_f contains no augmenting path

(iii) there is a cut (S, T) with $|f| = c(S, T)$

Proof.

(iii) \iff (i): follows from Corollary
Max-Flow Summary

Flow network
- directed graph with source and sink, and capacities on the edges
- if (u,v) in E then we cannot have (v,u) in E

Flow in a network
- must satisfy capacity constraints and “flow in = flow out”

Ford-Fulkerson method
- iteratively increase flow using augmenting paths in residual graph

Max flow = min cut

more on flows next lecture