EXAMINATION MATHEMATICAL TECHNIQUES FOR IMAGE ANALYSIS

Course code: 2DMM10. Date: Wednesday February 1, 2017. Time: 13:30–16:30. Place: AUD 9.

Read this first!

- Use a separate sheet of paper for each problem. Write your name and student ID on each paper.
- The exam consists of 4 problems. The maximum credit for each item is indicated in the margin.
- The use of course notes is allowed, provided it is in immaculate state. The use of other notes, calculator, laptop, smartphone, or any other equipment, is *not* allowed.
- Motivate your answers. You may provide your answers in Dutch or English.

GOOD LUCK!

(30) 1. LINEAR ALGEBRA

Let V be an n-dimensional real vector space, with basis $\mathscr{B}_V = \{e_1, \dots, e_n\}$.

 $(2\frac{1}{2})$ **a1.** Show that $o \notin \mathscr{B}_V$, i.e. the zero vector $o \in V$ is not admissible as a basis vector.

Suppose $o \in \mathcal{B}_V$, say $e_1 = o$. Then there exists a nontrivial linear combination $o = \lambda_1 e_1 + \ldots + \lambda_n e_n$, viz. take $\lambda_1 \neq 0$ arbitrary and $\lambda_2 = \ldots = \lambda_n = 0$. This contradicts the basic axiom of a basis.

 $(2\frac{1}{2})$ a2. Show that, for any given $v \in V$, its decomposition $v = v^1 e_1 + \ldots + v^n e_n$ relative to \mathscr{B}_V is unique.

Suppose $v=v^1e_1+\ldots+v^ne_n=w^1e_1+\ldots+w^ne_n$, then $(v^1-w^1)e_1+\ldots+(v^n-w^n)e_n=o$. By definition of a basis $\mathscr{B}_V=\{e_1,\ldots,e_n\}$ this means that $v^i=w^i$ for each $i=1,\ldots,n$.

Associated with V is the real dual vector space $V^* = \mathcal{L}(V, \mathbb{R})$ of all linear maps of type $\phi : V \to \mathbb{R}$.

(5) **b.** How is vector addition and scalar multiplication defined on V^* ?

For any $\phi, \psi \in V^*$ and $\lambda, \mu \in \mathbb{R}$ we have $(\lambda \phi + \mu \psi)(v) = \lambda \phi(v) + \mu \psi(v)$ for all $v \in V$, which defines the vector structure on V^* .

We assume that V is equipped with a real inner product $\langle . | . \rangle : V \times V \to \mathbb{R} : (v, w) \mapsto \langle v | w \rangle$. Basis \mathscr{B}_V and inner product $\langle . | . \rangle$ determine the so-called (non-singular) *Gram matrix G*, with entries

$$g_{ij} \doteq \langle e_i | e_j \rangle$$
.

(5) **c.** Let $a=a^1e_1+\ldots+a^ne_n$ and $v=v^1e_1+\ldots+v^ne_n$. Show that $\langle a|v\rangle=\sum_{k,\ell=1}^ng_{k\ell}a^kv^\ell$.

We have $\langle a|v\rangle = \langle \sum_{k=1}^n a^k e_k | \sum_{\ell=1}^n v^\ell e_\ell \rangle \stackrel{*}{=} \sum_{k=1}^n \sum_{\ell=1}^n a^k v^\ell \langle e_k | e_\ell \rangle \stackrel{*}{=} \sum_{k=1}^n \sum_{\ell=1}^n g_{k\ell} a^k v^\ell$. In * we have used bilinearity of the real inner product, in * the definition of the entries of the Gram matrix.

(5) **d.** Show that the map $\phi_a: V \to \mathbb{R}: v \mapsto \phi_a(v) \doteq \langle a|v \rangle$ is linear, i.e. $\phi_a \in V^*$, for any $a \in V$.

For any $v, w \in V$ and $\lambda, \mu \in \mathbb{R}$ we have $\phi_a(\lambda v + \mu w) = \langle a|\lambda v + \mu w\rangle \stackrel{*}{=} \lambda \langle a|v\rangle + \mu \langle a|w\rangle = \lambda \phi_a(v) + \mu \phi_a(w)$. In * we have used linearity of the inner product with respect to its second argument, the other equalities rely on the definition of the mapping $\phi_a \in V^*$.

(5) **e.** Show that $\phi_a \in V^*$ is uniquely defined by the parameter vector $a \in V$. (*Hint:* Assume $\phi_a = \phi_b$ for $a, b \in V$, show that a = b.)

Suppose $\phi_a = \phi_b$ for some $a, b \in V$, i.e. $\phi_a(v) = \phi_b(v)$ for all $v \in V$, or $\langle a|v \rangle = \langle b|v \rangle$. Using (sesqui)linearity of the inner product this is equivalent to $\langle a-b|v \rangle = 0$. Since this holds for all $v \in V$, nondegeneracy of the inner product (consider e.g. v = a - b) implies a - b = o, i.e. a = b.

(5) **f.** Show that any $\phi \in V^*$ can be represented in the parametrised form $\phi_a = \langle a | . \rangle$ for some $a \in V$. (*Hint:* Show that there exist coefficients $\phi_k \in \mathbb{R}$ such that $\phi(v) = \sum_{k=1}^n \phi_k v^k$, and find $a \in V$ in terms of these.)

Suppose $v = \sum_{k=1}^n v^k e_k \in V$ and $\phi \in V^*$, then $\phi(v) = \phi(\sum_{k=1}^n v^k e_k) \stackrel{*}{=} \sum_{k=1}^n v^k \phi(e_k) \stackrel{\text{def}}{=} \sum_{k=1}^n \phi_k v^k$. In * we have made use of the linearity of $\phi \in V^*$, whereas the last identity defines the coefficients $\phi_k \stackrel{\text{def}}{=} \phi(e_k)$. In view of problem c let us take $a = \sum_{k=1}^n a^k e_k \in V$ such that $\langle a|v\rangle \stackrel{c}{=} \sum_{k=1}^n \sum_{\ell=1}^n g_{k\ell} a^k v^\ell = \sum_{\ell} \phi_\ell v^\ell$ for any $v \in V$. This suggets that we define $\phi_\ell \stackrel{\text{def}}{=} \sum_{k=1}^n g_{k\ell} a^k$. This is indeed a good definition, since the (symmetric) Gram matrix is invertible, so that we find an unambiguous vector $a \in V$ with coefficients $a^k = \sum_{\ell=1}^n g^{k\ell} \phi_\ell$, in which $g^{k\ell}$ denote the coefficients of the inverse Gram matrix.

(30) 2. Group Theory (Exam January 25, 2013, Problem 1)

In this problem we consider the set of 2-parameter transformations on $\mathbb{L}_2(\mathbb{R})$ defined by

$$G = \{T_{a,b} : \mathbb{L}_2(\mathbb{R}) \to \mathbb{L}_2(\mathbb{R}) : f \mapsto T_{a,b}(f) \mid T_{a,b}(f)(x) = bf(x+a), a \in \mathbb{R}, b \in \mathbb{R}^+ \} .$$

By $T_{a,b}(f)(x)$ we mean $(T_{a,b}(f))(x)$. We furnish the set G with the usual composition operator, indicated by the infix symbol \circ :

$$\circ: G \times G \to G: (T_{a,b}, T_{c,d}) \mapsto T_{a,b} \circ T_{c,d}$$

i.e.
$$(T_{a,b} \circ T_{c,d})(f) = T_{a,b}(T_{c,d}(f))$$
.

a. Show that this is a good definition by proving the following claims for $a, c \in \mathbb{R}$, $b, d \in \mathbb{R}^+$:

(5) **a1.** If $f \in \mathbb{L}_2(\mathbb{R})$, then $T_{a,b}(f) \in \mathbb{L}_2(\mathbb{R})$. (Closure of $\mathbb{L}_2(\mathbb{R})$ under the mapping $T_{a,b}$.)

Suppose $f \in \mathbb{L}_2(\mathbb{R})$, then $||T_{a,b}f||_2^2 = \int_{-\infty}^{\infty} |bf(x+a)|^2 dx \stackrel{*}{=} b^2 \int_{-\infty}^{\infty} |f(y)|^2 dy = b^2 ||f||_2^2 < \infty$. In * we have changed variables: y = x + a, the other identities rely on definitions.

(5) **a2.** If $T_{a,b} \in G$, then $T_{a,b} \circ T_{c,d} = T_{a+c,bd}$. (Closure of G under composition \circ .)

For arbitrary $f \in \mathbb{L}_2(\mathbb{R})$ and $x \in \mathbb{R}$ we have $(T_{a,b} \circ T_{c,d})(f)(x) = T_{a,b}(T_{c,d}(f))(x) = bT_{c,d}(f)(x+a) = bdf(x+a+c) = T_{a+c,bd}(f)(x)$, so that we may conclude that $T_{a,b} \circ T_{c,d} = T_{a+c,bd}$.

(10) **b.** Show that $\{G, \circ\}$ constitutes a commutative group, and give explicit expressions for the identity element $e \in G$, and for the inverse element $T_{a,b}^{\text{inv}} \in G$ corresponding to $T_{a,b} \in G$.

Closure has been proven. Let $a,c,e\in\mathbb{R}$ and $b,d,f\in\mathbb{R}^+$ be arbitrary. Commutativity follows from $T_{a,b}\circ T_{c,d}=T_{a+c,bd}=T_{c+a,db}=T_{c,d}\circ T_{a,b}$. Associativity follows from the fact that composition is, by construction, associative. Alternatively, exploit the identity proven under a2: $(T_{a,b}\circ T_{c,d})\circ T_{e,f}=T_{a+c,bd}\circ T_{e,f}=T_{(a+c)+e,(bd)f}=T_{a+(c+e),b(df)}=T_{a,b}\circ (T_{c+e,df})=T_{a,b}\circ (T_{c,d}\circ T_{e,f})$. The identity element is $T_{0,1}\in G$, since $T_{a,b}\circ T_{0,1}=T_{0,1}\circ T_{a,b}=T_{0+a,1b}=T_{a,b}$. The inverse element $T_{a,b}^{-1}$ of $T_{a,b}\in G$ is given by $T_{a,b}^{-1}=T_{-a,1/b}\in G$, since $T_{a,b}\circ T_{-a,1/b}=T_{-a,1/b}\circ T_{a,b}=T_{-a+a,b/b}=T_{0,1}$.

(10) **c.** Show that $G_1 = \{T_{a,b} \in G \mid a \in \mathbb{R}, b = 1\}$ is a subgroup of G. (*Hint:* Exploit the fact that G is a group and $G_1 \subset G$.)

 $T_{a,1} \circ T_{c,1} = T_{a+c,1} \in G_1$, so $G_1 \subset G$ is closed under \circ . Moreover, $T_{a,1}^{-1} = T_{-a,1} \in G$, so $G_1 \subset G$ is also closed under inversion. Hence $G_1 \subset G$ is a subgroup.

(20) 3. PDE THEORY AND FOURIER ANALYSIS

The so-called Bloch-Torrey equations describe the evolution of the 3 components of the magnetization vector field $\vec{M}(x,y,z,t) = (M_x(x,y,z,t), M_y(x,y,z,t), M_z(x,y,z,t))$ induced in a patient placed in an MRI scanner with static magnetic field $\vec{B}_0 = (0,0,B_0)$. In particular, the \mathbb{C} -valued transversal magnetization $m(x,y,z,t) \doteq M_x(x,y,z,t) + iM_y(x,y,z,t)$ satisfies the partial differential equation

$$\frac{\partial m}{\partial t} = -i\omega_0 m - \frac{m}{T_2} + D\Delta m \,,$$

in which $\Delta \doteq \partial^2/\partial x^2 + \partial^2/\partial y^2 + \partial^2/\partial z^2$ is the Laplacian. The so-called Larmor frequency $\omega_0 > 0$ is a constant proportional to B_0 . We likewise assume D>0, the diffusion coefficient, and $T_2>0$, the spin-spin relaxation time, to be constant.

(5) **a.** Give the corresponding evolution equation for $\widehat{m}(\omega_x, \omega_y, \omega_z, t)$ in the spatial Fourier domain.

We have

$$\frac{\partial \widehat{m}}{\partial t} = -\left(i\omega_0 + \frac{1}{T_2} + D\|\omega\|^2\right)\widehat{m},$$

in which $\|\omega\|^2 \doteq \omega_x^2 + \omega_y^2 + \omega_z^2$.

At the start of the scan sequence, the system is initialized so that $m(x, y, z, t = 0) = m_0(x, y, z)$, with Fourier transform $\widehat{m}_0(\omega_x, \omega_y, \omega_z)$.

(5) **b.** Determine $\widehat{m}(\omega_x, \omega_y, \omega_z, t)$ as a function of time $t \geq 0$, given $\widehat{m}_0(\omega_x, \omega_y, \omega_z)$.

We have

$$\widehat{m}(\omega_x, \omega_y, \omega_z, t) = \widehat{m}_0(\omega_x, \omega_y, \omega_z) e^{-(i\omega_0 + 1/T_2 + D\|\omega\|^2)t}.$$

- **c.** Show that $\mu(t) \doteq \int_{\mathbb{R}^3} m(x,y,z,t) dx dy dz$ is not preserved as a function of time by proving the following statements:
- $(2\frac{1}{2})$ **c1.** $|\mu(t)|$ decays exponentially over time towards zero.
- $(2\frac{1}{2})$ **c2.** $\mu(t)/|\mu(t)|$ rotates clockwise with uniform angular velocity around the origin of the \mathbb{C} -plane.

We have

$$\mu(t) = \int_{\mathbb{R}^3} m(x, y, z, t) dx dy dz = \widehat{m}(0, 0, 0, t) = \widehat{m}_0(0, 0, 0) e^{-(i\omega_0 + 1/T_2)t}.$$

Both statements follow by inspection: $|\mu(t)| = |\widehat{m}_0(0,0,0)| \, e^{-t/T_2}$, resp. $\mu(t)/|\mu(t)| = e^{-i(\omega_0 t - \phi)}$, in which the phase angle ϕ is defined such that $e^{i\phi} \stackrel{\text{def}}{=} \widehat{m}_0(0,0,0)/|\widehat{m}_0(0,0,0)|$.

(5) **d.** Determine m(x, y, z, t) as a function of time $t \ge 0$, given $m_0(x, y, z)$.

We have the solution implicitly in Fourier space, cf. problem b. Write it as

$$\widehat{m}(\omega_x,\omega_y,\omega_z,t) = e^{-(i\omega_0+1/T_2)t}\,\widehat{m}_0(\omega_x,\omega_y,\omega_z)\,\widehat{\phi}_t(\omega_x,\omega_y,\omega_z)\,,$$

in which

$$\widehat{\phi}_t(\omega_x, \omega_y, \omega_z) = e^{-D\|\omega\|^2 t}.$$

In order to obtain its Fourier inverse we may apply one of the convolution theorems (the overall factor $e^{-(i\omega_0+1/T_2)t}$ can be seen as a constant factor, since it does not involve $\omega=(\omega_x,\omega_y,\omega_z)$, and can be separated by virtue of linearity of the Fourier transform):

$$m(x,y,z,t) = e^{-(i\omega_0+1/T_2)t}\,\mathcal{F}^{-1}\left(\widehat{m}_0\,\widehat{\phi}_t\right)(x,y,z) = e^{-(i\omega_0+1/T_2)t}\left(m_0*\phi_t\right)\!(x,y,z)\,,$$

in which

$$\phi_t(x,y,z) = \frac{1}{(2\pi)^3} \int_{\mathbb{R}^3} e^{-D\|\omega\|^2 t + i\omega \cdot x} d\omega = \frac{1}{\sqrt{4\pi Dt}^3} e^{-\frac{x^2 + y^2 + z^2}{4DT}} \ .$$

Here we have abbreviated $\omega \cdot x = \omega_x x + \omega_y y + \omega_z z$.

(20) 4. DISTRIBUTION THEORY & FOURIER ANALYSIS

The set notation $S_1 \subsetneq S_2$ means that S_1 is a strict subset of S_2 , i.e. $S_1 \subset S_2$ and $S_1 \neq S_2$. Let $\mathscr{D}(\mathbb{R}) \subset \mathscr{S}(\mathbb{R})$ be the class of Schwartz functions in one dimension that vanish outside a finite interval.

- (5) **a.** Show that $\mathscr{D}(\mathbb{R}) \subsetneq \mathscr{S}(\mathbb{R})$ by providing an explicit example of an element $\phi \in \mathscr{S}(\mathbb{R})$ with $\phi \not\in \mathscr{D}(\mathbb{R})$. Take e.g. $\phi(x) = e^{-x^2}$. We have $\phi \in \mathscr{S}(\mathbb{R})$, but, since its essential domain is all of \mathbb{R} , $\phi \not\in \mathscr{D}(\mathbb{R})$.
- (5) **b.** Argue why this implies the strict inclusion $\mathscr{S}'(\mathbb{R}) \subsetneq \mathscr{D}'(\mathbb{R})$ for the corresponding topological duals.

If we restrict ourselves to regular distributions represented by 'functions under the integral', we may consider a function of non-polynomial growth, e.g. $f(x)=e^{x^2}$ (which cannot be bounded by a polynomial in the asymptotic regime $|x|\to\infty$). This function does define a distribution $F\in \mathscr{D}'(\mathbb{R})$, because the integral $F(\phi)=\int_{\mathbb{R}}f(x)\,\phi(x)\,dx$ does converge for all (compactly supported) $\phi\in\mathscr{D}(\mathbb{R})$, but it does not converge for all noncompactly supported $\phi\in\mathscr{D}(\mathbb{R})$ due to the asymptotic behaviour of f(x) as $|x|\to\infty$. Consider e.g. the test function as in problem a, then the product function $f\phi$ defines a nonzero constant integrand that obviously cannot be integrated.

We take for granted that $\mathscr{S}(\mathbb{R})$ is closed under Fourier transformation as well as under convolution. Let $\mathscr{S}_m(\mathbb{R}) \subset \mathscr{S}(\mathbb{R})$ be the subset of test functions $\phi \in \mathscr{S}(\mathbb{R})$ with m+1 vanishing momenta

$$\int_{-\infty}^{\infty} x^k \, \phi(x) \, dx = 0 \quad \text{for all } k = 0, 1, \dots, m.$$

(5) **c.** Show that this integral condition for $\phi \in \mathscr{S}_m(\mathbb{R})$ is equivalent to $\widehat{\phi}^{(k)}(0) = 0$ for all $k = 0, 1, \dots, m$. (The parenthesised superscript indicates derivative order.)

By definition we have

$$\widehat{\phi}^{(k)}(\omega) = \frac{d^k}{d\omega^k} \widehat{\phi}(\omega) \stackrel{\text{def}}{=} \frac{d^k}{d\omega^k} \int_{-\infty}^{\infty} e^{-i\omega x} \, \phi(x) \, dx \stackrel{\text{def}}{=} \int_{-\infty}^{\infty} (-ix)^k \, e^{-i\omega x} \, \phi(x) \, dx \, .$$

In particular this implies that

$$\widehat{\phi}^{(k)}(0) = \int_{-\infty}^{\infty} (-ix)^k \, \phi(x) \, dx \,,$$

which establishes the proof.

(5) **d.** Suppose $\phi \in \mathscr{S}_m(\mathbb{R})$ and $\psi \in \mathscr{S}_n(\mathbb{R})$ for some integers $m, n \geq 0$. Show that $\phi * \psi \in \mathscr{S}_p(\mathbb{R})$ in which $p = \max(m, n)$.

We have $\widehat{\phi * \psi} = \widehat{\phi} \widehat{\psi}$, so that, by virtue of the product rule,

$$\widehat{\phi * \psi}^{(k)}(\omega) = \left(\widehat{\phi}(\omega)\,\widehat{\psi}(\omega)\right)^{(k)} = \sum_{i=0}^{k} \binom{k}{i} \,\widehat{\phi}^{(i)}(\omega)\,\widehat{\psi}^{(k-i)}(\omega) \quad (k=0,1,2,\ldots).$$

Inserting $\omega = 0$ yields

$$\widehat{\phi*\psi}^{(k)}(0) = \sum_{i=0}^k \binom{k}{i} \, \widehat{\phi}^{(i)}(0) \, \widehat{\psi}^{(k-i)}(0) \, .$$

If $k \le p = \max(m, n)$, then each term is trivial, since at least one of the factors vanishes, whence, as a result of a, $\phi * \psi \in \mathscr{S}_p(\mathbb{R})$.