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EXAMINATION MATHEMATICAL TECHNIQUES FOR IMAGE ANALYSIS

Course code: 2DMM10. Date: Wednesday February 1, 2017. Time: 13:30-16:30. Place: AUD 9.

Read this first!

e Use a separate sheet of paper for each problem. Write your name and student ID on each paper.

e The exam consists of 4 problems. The maximum credit for each item is indicated in the margin.

e The use of course notes is allowed, provided it is in immaculate state. The use of other notes, calculator,
laptop, smartphone, or any other equipment, is not allowed.

Motivate your answers. You may provide your answers in Dutch or English.

GOOD LUCK!

1. LINEAR ALGEBRA

Let V be an n-dimensional real vector space, with basis Zy = {e1,...,e,}.

al. Show that o ¢ Ay, i.e. the zero vector o € V is not admissible as a basis vector.

Suppose 0 € By, say e1 = o. Then there exists a nontrivial linear combination 0 = Aje1 + ... 4+ Apen, viz. take A1 # O arbitrary and

A2 = ... = A\p = 0. This contradicts the basic axiom of a basis.
a2. Show that, for any given v € V, its decomposition v = vlep + ...+ v"e, relative to By is unique.

Suppose v = vle; + ...+ v"e, = wler + ... + w"en, then (v —wlle; + ... + (v — w™)e, = o. By definition of a basis

By = {e1,...,en} this means that v* = w® foreachi =1,...,n.

Associated with V is the real dual vector space V* = £ (V,R) of all linear maps of type ¢ : V' — R.
b. How is vector addition and scalar multiplication defined on V*?

For any ¢, € V* and A\, u € R we have (A¢ + pp)(v) = Ap(v) + pap(v) for all v € V, which defines the vector structure on V*.

We assume that V' is equipped with a real inner product (. |.) : V x V — R : (v, w) — (v|w). Basis
Sy and inner product ( . | . ) determine the so-called (non-singular) Gram matrix G, with entries

gij = (eilej) .

c.Leta =ale; + ...+ a", and v = vle; + ...+ v"e,. Show that (a|v) = S} ,_, grea®v’.

We have (alv) = (S7_, aFer| S0 vles) = 37, SO0, aFvllegler) = S0, 27| grea®vt. In x we have used bilinearity of

the real inner product, in x the definition of the entries of the Gram matrix.
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d. Show that the map ¢ : V — R : v +— ¢4(v) = (alv) is linear, i.e. ¢, € V*, forany a € V.

For any v, w € V and A, € R we have ¢q (Av 4 pw) = {a| v 4 pw) = Malv) + plajw) = Apa(v) + pea(w). In * we have used

linearity of the inner product with respect to its second argument, the other equalities rely on the definition of the mapping ¢, € V'*.

e. Show that ¢, € V* is uniquely defined by the parameter vector a € V.
(Hint: Assume ¢, = ¢y, for a,b € V, show that a = b.)

Suppose ¢po = ¢ for some a,b € V, ie. ¢po(v) = ¢p(v) forallv € V, or {a|v) = (b|v). Using (sesqui)linearity of the inner product
this is equivalent to (@ — blv) = 0. Since this holds for all v € V/, nondegeneracy of the inner product (consider e.g. v = a — b) implies

a—b=o,ie.a=0.

f. Show that any ¢ € V* can be represented in the parametrised form ¢, = (a| . ) for some a € V.

(Hint: Show that there exist coefficients ¢5 € R such that ¢(v) = >_1_, ¢v*, and find a € V in terms of these.)
Suppose v = S°%_, vFer, € Vand ¢ € V*, then ¢(v) = ¢(3 7., vPer) = S0, vFo(er) &f SR ékv*. In * we have made use of
the linearity of ¢ € V'*, whereas the last identity defines the coefficients ¢y, def ¢(ex). In view of problem c let us take a = > 0, akey €
V such that (alv) = SR 7 greakvt = 3, vt for any v € V. This suggets that we define ¢, def S P, grea®. This is
indeed a good definition, since the (symmetric) Gram matrix is invertible, so that we find an unambiguous vector a € V' with coefficients

ak = > ¥, in which g denote the coefficients of the inverse Gram matrix.
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2. GROUP THEORY (EXAM JANUARY 25, 2013, PROBLEM 1)

In this problem we consider the set of 2-parameter transformations on Ly (R) defined by
G = {Tup : Lo(R) = La(R) : f = Tup(f) | Tup(f)(2) = bf(x +a)a € RbERF} .

By T,(f)(xz) we mean (T 4(f)) (). We furnish the set G with the usual composition operator,
indicated by the infix symbol o:

0:GXG—=G:(Typ,Teq) = TopoTed,
ie. (TupoTed)(f) = Tup(Tealf))

a. Show that this is a good definition by proving the following claims for a,c € R, b,d € RT:
al. If f € Lo(R), then T, ,(f) € La(R). (Closure of Lp(IR) under the mapping 75, 4.)

Suppose f € La(R), then || T, 5 f[13 = [ |bf(z + a)|?dx = b2 [*°_|f(y)[2dy = b?||f||3 < oco. In * we have changed variables:

Yy = x + a, the other identities rely on definitions.
a2. IfT,,, € G, then T, o T. g = Ty pq- (Closure of G under composition o.)

For arbitrary f € L2(R) and z € R we have (T, 0 Tc,q)(f)(z) = Tap(Te,a(f))(z) = bTea(f)(z 4+ a) = bdf(z +a+c) =
Totc,bd(f)(x), so that we may conclude that T, ;, 0 Tp. g = Tt bd-

b. Show that {G,o} constitutes a commutative group, and give explicit expressions for the identity
element e € G, and for the inverse element 7"y € G corresponding to T}, ;, € G.

Closure has been proven. Let a, c,e € R and b, d, f € R be arbitrary. Commutativity follows from TapoTed="Totepd = Teta,dp =
T.,q o Ty,p. Associativity follows from the fact that composition is, by construction, associative. Alternatively, exploit the identity proven
under a2: (T p 0 Ted) © Te f = Tutepd © Te,f = Tlate)te,(bd)f = Lat(ete),bdf) = Lab © (Tete,df) = Tap © (Te,a 0 Te,f)-
The identity element is Tp,1 € G, since Ty, © To,1 = T0,1 © Ta,p = To4a,16 = Ta,b- The inverse element Ta_bl of Ty, € G is given by

-1 .
T,y =T_qip€G.sinceTyp0T o 1/6 =T g1/5°Tap =T qta,b/6 =701

c. Show that G; = {T,;, € G| a € R, b = 1} is a subgroup of G.
(Hint: Exploit the fact that G is a group and G; C G.)
Ta10Te,1 = Tate,1 € G1,80 G1 C G is closed under o. Moreover, T;ll =T_4,1 € G,s50G1 C G is also closed under inversion.

Hence G'1 C G is a subgroup.

&

3. PDE THEORY AND FOURIER ANALYSIS

The so-called Bloch-Torrey equations describe the evolution of the 3 components of the magnetization

vector field J\Zf(w, y,z,t) = (My(z,y, 2,t), My(z,y, 2,t), M,(z,y, 2,t)) induced in a patient placed

in an MRI scanner with static magnetic field By = (0,0, By). In particular, the C-valued transversal

magnetization m(x, y, z,t) = My(x,y, z,t) + iM,(z,y, z, t) satisfies the partial differential equation
om

E = —uumn—%—&—l)Am,
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in which A = 92/92% + 9%/0y? + 9% /022 is the Laplacian. The so-called Larmor frequency wo > 0
is a constant proportional to By. We likewise assume D > 0, the diffusion coefficient, and 75 > 0, the
spin-spin relaxation time, to be constant.

a. Give the corresponding evolution equation for m(w;, wy,w., t) in the spatial Fourier domain.
‘We have

om

1
e (iwo +n +D||wH2> m,

in which ||w||? = w2 + wg + w2

At the start of the scan sequence, the system is initialized so that m(z,y, z,t=0) = mo(z, y, z), with
Fourier transform mg(w,, wy, w-).

b. Determine 7 (wy, wy, w., t) as a function of time ¢ > 0, given Mg (wy, Wy, w>).

‘We have

~ ~ —(2 2
M wa, Wy, Wz, t) = Mo (We, wy, wz) € (iwo+1/T2+D|w|*)t

c. Show that yu(t) = [zs m(z,y, z,t)dzdydz is not preserved as a function of time by proving the
following statements:

cl.

w(t)| decays exponentially over time towards zero.

c2. u(t)/|p(t)| rotates clockwise with uniform angular velocity around the origin of the C-plane.

We have
p(t) = / m(z,y, z, t)dzdydz = m(0,0,0,t) = ing(0,0,0) e~ wot1/T2)t
R3

Both statements follow by inspection: |u(t)| = |0(0,0,0)| e~t/T2, resp. u(t)/|u(t)] = e~(«“0t=®) in which the phase angle ¢ is
defined such that ¢'® & 74 (0, 0, 0) /|70 (0, 0, 0)].

d. Determine m(z, y, z, t) as a function of time ¢ > 0, given mg(z, y, 2).

‘We have the solution implicitly in Fourier space, cf. problem b. Write it as

m(wszvazvt) = ei(iw0+1/Tz)t ﬁ’LO(Uszwy’WZ) $t(wa37wy:w2) b

in which R R
Ot (We, wy, wz) = e~ Pllwl”t

In order to obtain its Fourier inverse we may apply one of the convolution theorems (the overall factor e~ (wo+1/T2)t can be seen as a
constant factor, since it does not involve w = (wg,wy,w ), and can be separated by virtue of linearity of the Fourier transform):

m(,y, z,1) = e~ 0TI Z1 (7 G, ) (2,y,2) = e~ 0T/ T2 (mg 5 61)(,, 2)

in which

2 2 2
/ o~ DllwlPttivz g, _ ;3 R e a
R3 4m Dt

1
¢t(x7y7 Z) = (27‘_)3

Here we have abbreviated w - © = wzx + wyy + w: 2.
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4. DISTRIBUTION THEORY & FOURIER ANALYSIS

The set notation S7 C Sy means that Sy is a strict subset of S, i.e. 51 C Sy and S7 # So. Let
2(R) C.(R) be the class of Schwartz functions in one dimension that vanish outside a finite interval.

a. Show that Z(R) C . (R) by providing an explicit example of an element ¢ € . (R) with ¢ & Z(R).
Take e.g. p(x) = e=*”. We have ¢ € 7 (R), but, since its essential domain is all of R, ¢ & Z(R).
b. Argue why this implies the strict inclusion .’/ (R) C 2’(R) for the corresponding topological duals.

If we restrict ourselves to regular distributions represented by ‘functions under the integral’, we may consider a function of non-polynomial
growth, e.g. f(z) = e’ (which cannot be bounded by a polynomial in the asymptotic regime |z| — oo). This function does define a
distribution ' € 2'(R), because the integral F'(¢) = [ f(z) ¢(x) dz does converge for all (compactly supported) ¢ € Z(R), but it
does not converge for all noncompactly supported ¢ € . (R) due to the asymptotic behaviour of f(z) as |z| — oo. Consider e.g. the test

function as in problem a, then the product function f¢ defines a nonzero constant integrand that obviously cannot be integrated.

We take for granted that .(R) is closed under Fourier transformation as well as under convolution. Let
Im(R) C Z(R) be the subset of test functions ¢ € .#’(R) with m+-1 vanishing momenta

/ X p(x)de =0 forallk=0,1,....m

o0

c. Show that this integral condition for ¢ € .7, (R) is equivalent to o® (0)=0forall k=0,1,...,m
(The parenthesised superscript indicates derivative order.)

By definition we have

dwk

dF or dF oo e . —i
F9(w) = 1) oo [ gy e ¥ [ (i o) da

In particular this implies that
30 = [ (i)t o) do,
which establishes the proof.
d. Suppose ¢ € .7, (R) and ¢ € .7, (R) for some integers m, n > 0. Show that ¢ * ¢ € .7, (R) in which
p=max(m,n).

—

We have ¢ * 1) = 512)\, so that, by virtue of the product rule,

5" (@) = (3) ()" i( IO (B=01.20),

=0

Inserting w =0 yields
PR Z( )cb“ (0) $*=(0).
=0

If k <p=max(m,n), then each term is trivial, since at least one of the factors vanishes, whence, as a result of a, ¢ * 1 € 7, (R).

THE END



