
EXAMINATION MATHEMATICAL TECHNIQUES FOR IMAGE ANALYSIS

Course code: 2DMM10. Date: Wednesday February 1, 2017. Time: 13:30–16:30. Place: AUD 9.

Read this first!

• Use a separate sheet of paper for each problem. Write your name and student ID on each paper.

• The exam consists of 4 problems. The maximum credit for each item is indicated in the margin.

• The use of course notes is allowed, provided it is in immaculate state. The use of other notes, calculator,
laptop, smartphone, or any other equipment, is not allowed.

• Motivate your answers. You may provide your answers in Dutch or English.

GOOD LUCK!

1. LINEAR ALGEBRA(30)

Let V be an n-dimensional real vector space, with basis BV = {e1, . . . , en}.

a1. Show that o 6∈ BV , i.e. the zero vector o ∈ V is not admissible as a basis vector.(21
2 )

Suppose o ∈ BV , say e1 = o. Then there exists a nontrivial linear combination o = λ1e1 + . . . + λnen, viz. take λ1 6= 0 arbitrary and

λ2 = . . . = λn = 0. This contradicts the basic axiom of a basis.

a2. Show that, for any given v ∈ V , its decomposition v = v1e1 + . . .+ vnen relative to BV is unique.(21
2 )

Suppose v = v1e1 + . . . + vnen = w1e1 + . . . + wnen, then (v1 − w1)e1 + . . . + (vn − wn)en = o. By definition of a basis

BV = {e1, . . . , en} this means that vi = wi for each i = 1, . . . , n.

Associated with V is the real dual vector space V ∗ = L (V,R) of all linear maps of type φ : V → R.

b. How is vector addition and scalar multiplication defined on V ∗?(5)

For any φ, ψ ∈ V ∗ and λ, µ ∈ R we have (λφ+ µψ)(v) = λφ(v) + µψ(v) for all v ∈ V , which defines the vector structure on V ∗.

We assume that V is equipped with a real inner product 〈 . | . 〉 : V × V → R : (v, w) 7→ 〈v|w〉. Basis
BV and inner product 〈 . | . 〉 determine the so-called (non-singular) Gram matrix G, with entries

gij
.
= 〈ei|ej〉 .

c. Let a = a1e1 + . . .+ anen and v = v1e1 + . . .+ vnen. Show that 〈a|v〉 =
∑n

k,`=1 gk`a
kv`.(5)

We have 〈a|v〉 = 〈
∑n
k=1 a

kek|
∑n
`=1 v

`e`〉
∗
=
∑n
k=1

∑n
`=1 a

kv`〈ek|e`〉
?
=
∑n
k=1

∑n
`=1 gk`a

kv`. In ∗ we have used bilinearity of

the real inner product, in ? the definition of the entries of the Gram matrix.



d. Show that the map φa : V → R : v 7→ φa(v)
.
= 〈a|v〉 is linear, i.e. φa ∈ V ∗, for any a ∈ V .(5)

For any v, w ∈ V and λ, µ ∈ R we have φa(λv + µw) = 〈a|λv + µw〉 ∗= λ〈a|v〉 + µ〈a|w〉 = λφa(v) + µφa(w). In ∗ we have used

linearity of the inner product with respect to its second argument, the other equalities rely on the definition of the mapping φa ∈ V ∗.

e. Show that φa ∈ V ∗ is uniquely defined by the parameter vector a ∈ V .(5)
(Hint: Assume φa = φb for a, b ∈ V , show that a = b.)

Suppose φa = φb for some a, b ∈ V , i.e. φa(v) = φb(v) for all v ∈ V , or 〈a|v〉 = 〈b|v〉. Using (sesqui)linearity of the inner product

this is equivalent to 〈a − b|v〉 = 0. Since this holds for all v ∈ V , nondegeneracy of the inner product (consider e.g. v = a − b) implies

a− b = o, i.e. a = b.

f. Show that any φ ∈ V ∗ can be represented in the parametrised form φa = 〈a| . 〉 for some a ∈ V .(5)
(Hint: Show that there exist coefficients φk ∈ R such that φ(v) =

∑n
k=1 φkv

k, and find a ∈ V in terms of these.)

Suppose v =
∑n
k=1 v

kek ∈ V and φ ∈ V ∗, then φ(v) = φ(
∑n
k=1 v

kek)
∗
=
∑n
k=1 v

kφ(ek)
def
=
∑n
k=1 φkv

k . In ∗we have made use of

the linearity of φ ∈ V ∗, whereas the last identity defines the coefficients φk
def
= φ(ek). In view of problem c let us take a =

∑n
k=1 a

kek ∈
V such that 〈a|v〉 c

=
∑n
k=1

∑n
`=1 gk`a

kv` =
∑
` φ`v

` for any v ∈ V . This suggets that we define φ`
def
=
∑n
k=1 gk`a

k . This is

indeed a good definition, since the (symmetric) Gram matrix is invertible, so that we find an unambiguous vector a ∈ V with coefficients

ak =
∑n
`=1 g

k`φ`, in which gk` denote the coefficients of the inverse Gram matrix.

♣



2. GROUP THEORY (EXAM JANUARY 25, 2013, PROBLEM 1)(30)

In this problem we consider the set of 2-parameter transformations on L2(R) defined by

G = {Ta,b : L2(R)→ L2(R) : f 7→ Ta,b(f) | Ta,b(f)(x) = bf(x+ a), a ∈ R, b ∈ R+ } .

By Ta,b(f)(x) we mean (Ta,b(f)) (x). We furnish the set G with the usual composition operator,
indicated by the infix symbol ◦:

◦ : G×G→ G : (Ta,b, Tc,d) 7→ Ta,b ◦ Tc,d ,

i.e. (Ta,b ◦ Tc,d)(f) = Ta,b(Tc,d(f)).

a. Show that this is a good definition by proving the following claims for a, c ∈ R, b, d ∈ R+:

a1. If f ∈ L2(R), then Ta,b(f) ∈ L2(R). (Closure of L2(R) under the mapping Ta,b.)(5)

Suppose f ∈ L2(R), then ‖Ta,bf‖22 =
∫∞
−∞ |bf(x + a)|2dx ∗= b2

∫∞
−∞ |f(y)|

2dy = b2‖f‖22 < ∞. In ∗ we have changed variables:

y = x+ a, the other identities rely on definitions.

a2. If Ta,b ∈ G, then Ta,b ◦ Tc,d = Ta+c,bd. (Closure of G under composition ◦.)(5)

For arbitrary f ∈ L2(R) and x ∈ R we have (Ta,b ◦ Tc,d)(f)(x) = Ta,b(Tc,d(f))(x) = bTc,d(f)(x + a) = bdf(x + a + c) =

Ta+c,bd(f)(x), so that we may conclude that Ta,b ◦ Tc,d = Ta+c,bd.

b. Show that {G, ◦} constitutes a commutative group, and give explicit expressions for the identity(10)
element e ∈ G, and for the inverse element T inv

a,b ∈ G corresponding to Ta,b ∈ G.

Closure has been proven. Let a, c, e ∈ R and b, d, f ∈ R+ be arbitrary. Commutativity follows from Ta,b ◦Tc,d = Ta+c,bd = Tc+a,db =

Tc,d ◦ Ta,b. Associativity follows from the fact that composition is, by construction, associative. Alternatively, exploit the identity proven

under a2: (Ta,b ◦ Tc,d) ◦ Te,f = Ta+c,bd ◦ Te,f = T(a+c)+e,(bd)f = Ta+(c+e),b(df) = Ta,b ◦ (Tc+e,df ) = Ta,b ◦ (Tc,d ◦ Te,f ).
The identity element is T0,1 ∈ G, since Ta,b ◦ T0,1 = T0,1 ◦ Ta,b = T0+a,1b = Ta,b. The inverse element T−1

a,b of Ta,b ∈ G is given by

T−1
a,b = T−a,1/b ∈ G, since Ta,b ◦ T−a,1/b = T−a,1/b ◦ Ta,b = T−a+a,b/b = T0,1.

c. Show that G1 = {Ta,b ∈ G | a ∈ R, b = 1} is a subgroup of G.(10)
(Hint: Exploit the fact that G is a group and G1 ⊂ G.)

Ta,1 ◦ Tc,1 = Ta+c,1 ∈ G1, so G1 ⊂ G is closed under ◦. Moreover, T−1
a,1 = T−a,1 ∈ G, so G1 ⊂ G is also closed under inversion.

Hence G1 ⊂ G is a subgroup.

♣

3. PDE THEORY AND FOURIER ANALYSIS(20)

The so-called Bloch-Torrey equations describe the evolution of the 3 components of the magnetization
vector field ~M(x, y, z, t) = (Mx(x, y, z, t),My(x, y, z, t),Mz(x, y, z, t)) induced in a patient placed
in an MRI scanner with static magnetic field ~B0 = (0, 0, B0). In particular, the C-valued transversal
magnetization m(x, y, z, t)

.
= Mx(x, y, z, t) + iMy(x, y, z, t) satisfies the partial differential equation

∂m

∂t
= −iω0m−

m

T2
+D∆m,



in which ∆
.
= ∂2/∂x2 + ∂2/∂y2 + ∂2/∂z2 is the Laplacian. The so-called Larmor frequency ω0> 0

is a constant proportional to B0. We likewise assume D> 0, the diffusion coefficient, and T2> 0, the
spin-spin relaxation time, to be constant.

a. Give the corresponding evolution equation for m̂(ωx, ωy, ωz, t) in the spatial Fourier domain.(5)

We have
∂m̂

∂t
= −

(
iω0 +

1

T2
+D‖ω‖2

)
m̂ ,

in which ‖ω‖2 .
= ω2

x + ω2
y + ω2

z .

At the start of the scan sequence, the system is initialized so that m(x, y, z, t= 0) = m0(x, y, z), with
Fourier transform m̂0(ωx, ωy, ωz).

b. Determine m̂(ωx, ωy, ωz, t) as a function of time t ≥ 0, given m̂0(ωx, ωy, ωz).(5)

We have
m̂(ωx, ωy , ωz , t) = m̂0(ωx, ωy , ωz) e

−(iω0+1/T2+D‖ω‖2)t .

c. Show that µ(t)
.
=

∫
R3 m(x, y, z, t)dxdydz is not preserved as a function of time by proving the

following statements:

c1. |µ(t)| decays exponentially over time towards zero.(21
2 )

c2. µ(t)/|µ(t)| rotates clockwise with uniform angular velocity around the origin of the C-plane.(21
2 )

We have
µ(t) =

∫
R3
m(x, y, z, t)dxdydz = m̂(0, 0, 0, t) = m̂0(0, 0, 0) e

−(iω0+1/T2)t .

Both statements follow by inspection: |µ(t)| = |m̂0(0, 0, 0)| e−t/T2 , resp. µ(t)/|µ(t)| = e−i(ω0t−φ), in which the phase angle φ is

defined such that eiφ def
= m̂0(0, 0, 0)/|m̂0(0, 0, 0)|.

d. Determine m(x, y, z, t) as a function of time t ≥ 0, given m0(x, y, z).(5)

We have the solution implicitly in Fourier space, cf. problem b. Write it as

m̂(ωx, ωy , ωz , t) = e−(iω0+1/T2)t m̂0(ωx, ωy , ωz) φ̂t(ωx, ωy , ωz) ,

in which
φ̂t(ωx, ωy , ωz) = e−D‖ω‖

2t .

In order to obtain its Fourier inverse we may apply one of the convolution theorems (the overall factor e−(iω0+1/T2)t can be seen as a
constant factor, since it does not involve ω = (ωx, ωy , ωz), and can be separated by virtue of linearity of the Fourier transform):

m(x, y, z, t) = e−(iω0+1/T2)t F−1
(
m̂0 φ̂t

)
(x, y, z) = e−(iω0+1/T2)t (m0 ∗ φt)(x, y, z) ,

in which

φt(x, y, z) =
1

(2π)3

∫
R3
e−D‖ω‖

2t+iω·xdω =
1

√
4πDt

3
e−

x2+y2+z2

4DT .

Here we have abbreviated ω · x = ωxx+ ωyy + ωzz.

♣



4. DISTRIBUTION THEORY & FOURIER ANALYSIS(20)

The set notation S1 ( S2 means that S1 is a strict subset of S2, i.e. S1 ⊂ S2 and S1 6= S2. Let
D(R)⊂S (R) be the class of Schwartz functions in one dimension that vanish outside a finite interval.

a. Show that D(R)(S (R) by providing an explicit example of an element φ∈S (R) with φ 6∈D(R).(5)

Take e.g. φ(x) = e−x
2

. We have φ ∈ S (R), but, since its essential domain is all of R, φ 6∈ D(R).

b. Argue why this implies the strict inclusion S ′(R)(D ′(R) for the corresponding topological duals.(5)

If we restrict ourselves to regular distributions represented by ‘functions under the integral’, we may consider a function of non-polynomial

growth, e.g. f(x) = ex
2

(which cannot be bounded by a polynomial in the asymptotic regime |x| → ∞). This function does define a

distribution F ∈ D ′(R), because the integral F (φ) =
∫
R f(x)φ(x) dx does converge for all (compactly supported) φ ∈ D(R), but it

does not converge for all noncompactly supported φ ∈ S (R) due to the asymptotic behaviour of f(x) as |x| → ∞. Consider e.g. the test

function as in problem a, then the product function fφ defines a nonzero constant integrand that obviously cannot be integrated.

We take for granted that S (R) is closed under Fourier transformation as well as under convolution. Let
Sm(R) ⊂ S (R) be the subset of test functions φ ∈ S (R) with m+1 vanishing momenta∫ ∞

−∞
xk φ(x) dx = 0 for all k=0, 1, . . . ,m.

c. Show that this integral condition for φ ∈ Sm(R) is equivalent to φ̂(k)(0)=0 for all k=0, 1, . . . ,m.(5)
(The parenthesised superscript indicates derivative order.)

By definition we have

φ̂(k)(ω) =
dk

dωk
φ̂(ω)

def
=

dk

dωk

∫ ∞
−∞

e−iωx φ(x) dx
def
=

∫ ∞
−∞

(−ix)k e−iωx φ(x) dx .

In particular this implies that

φ̂(k)(0) =

∫ ∞
−∞

(−ix)k φ(x) dx ,

which establishes the proof.

d. Suppose φ∈Sm(R) and ψ∈Sn(R) for some integers m,n ≥ 0. Show that φ ∗ψ∈Sp(R) in which(5)
p=max(m,n).

We have φ̂ ∗ ψ = φ̂ ψ̂, so that, by virtue of the product rule,

φ̂ ∗ ψ
(k)

(ω) =
(
φ̂(ω) ψ̂(ω)

)(k)
=

k∑
i=0

(
k
i

)
φ̂(i)(ω) ψ̂(k−i)(ω) (k = 0, 1, 2, . . .) .

Inserting ω=0 yields

φ̂ ∗ ψ
(k)

(0) =
k∑
i=0

(
k
i

)
φ̂(i)(0) ψ̂(k−i)(0) .

If k≤p=max(m,n), then each term is trivial, since at least one of the factors vanishes, whence, as a result of a, φ ∗ ψ∈Sp(R).

THE END


