EXAMINATION MATHEMATICAL TECHNIQUES FOR IMAGE ANALYSIS

Course code: 2DMM10. Date: Friday January 24, 2020. Time: 09:00-12:00. Place: Vertigo 4.06 A.

READ THIS FIRST!

- Use a separate sheet of paper for each problem. Write your name and student ID on each paper.
- The exam consists of 4 problems. The maximum credit for each item is indicated in the margin.
- The use of course notes is allowed, provided it is in immaculate state. The use of other notes, calculator, laptop, smartphone, or any other equipment, is *not* allowed.
- Motivate your answers. You may provide your answers in Dutch or English.

GOOD LUCK!

(35) **1.** VECTOR SPACE

We consider the subset H of points in \mathbb{R}^3 given by

(*)
$$\mathbf{H} \doteq \{(x, y, z) \in \mathbb{R}^3 \mid x^2 + y^2 = 1\},\$$

equipped with internal and external operations \oplus : H×H \rightarrow H, respectively \otimes : $\mathbb{R} \times H \rightarrow H$, viz.

$$\begin{array}{rcl} (x,y,z) \oplus (u,v,w) &\doteq & (xu - yv, yu + xv, z + w) \,, \\ \lambda \otimes (x,y,z) &\doteq & (x\cos(2\pi\lambda) - y\sin(2\pi\lambda), y\cos(2\pi\lambda) + x\sin(2\pi\lambda), z + \lambda) \,. \end{array}$$

For notational convenience we abbreviate elements of H as $X \doteq (x, y, z), U \doteq (u, v, w)$ et cetera.

- (5) **a.** Prove closure, i.e. show that $X \oplus U \in H$ and $\lambda \otimes X \in H$ for all $X, U \in H$ and $\lambda \in \mathbb{R}$.
- (5) **b.** Show that $X \in H$ can be parametrized such that the constraint in (\star) is automatically fulfilled. (*Hint:* Introduce an angle $\phi \in \mathbb{R}$ and consider polar coordinates for the (x, y)-plane.)

We now investigate whether (\star) , furnished with the operators \oplus and \otimes , satisfies all vector space axioms. We consider the abelian group requirement for \oplus first.

You may use the following lemma.

Lemma. For $\phi, \theta \in \mathbb{R}$ we have

 $\cos(\phi \pm \theta) = \cos \phi \cos \theta \mp \sin \phi \sin \theta ,$ $\sin(\phi \pm \theta) = \sin \phi \cos \theta \pm \cos \phi \sin \theta .$

(5) **c1.** Prove associativity: $(X \oplus U) \oplus A = X \oplus (U \oplus A)$ for all $X, U, A \in H$. (*Hint:* Exploit your observation in b and use the lemma.)

- $(2\frac{1}{2})$ c2. Prove commutativity: $X \oplus U = U \oplus X$ for all $X, U \in H$.
- $(2\frac{1}{2})$ c3. Show that $E \doteq (1,0,0) \in H$ is the neutral element for \oplus .
- (5) **c4.** State the explicit form of the antivector $(-X) \in H$ for any given $X \in H$, and prove $(-X) \oplus X = E$. Next we aim to verify the vector space axioms involving \otimes .

Conjecture. For any $X \in H$ and $\lambda \in \mathbb{R}$ there exists a $\Lambda \in H$ such that

$$\lambda \otimes X = \Lambda \oplus X \,.$$

- (5) **d.** Prove this conjecture by constructing the explicit form of $\Lambda \in H$ given $\lambda \in \mathbb{R}$.
- (5) **e.** Show that H is *not* a vector space by showing that \otimes violates the axioms for scalar multiplication. (*Hint:* The conjecture may be helpful.)

÷

(15) **2.** INNER PRODUCT

For $v, w \in \mathbb{R}^n$, endowed with the standard vector space structure, we wish to define a real inner product

$$(\dagger) \qquad \langle v | w \rangle \doteq v^{\mathsf{T}} \mathbf{G} w \, ,$$

in which, in terms of standard vector-matrix notation, with real entries v_i , g_{ij} and w_j , $1 \le i, j \le n$,

$$v^{\mathsf{T}} \doteq \begin{pmatrix} v_1 & \dots & v_n \end{pmatrix}, \qquad \mathbf{G} \doteq \begin{pmatrix} g_{11} & \dots & g_{1n} \\ \vdots & & \vdots \\ g_{n1} & \dots & g_{nn} \end{pmatrix}, \qquad w \doteq \begin{pmatrix} w_1 \\ \vdots \\ w_n \end{pmatrix}.$$

The following theorems may be used without proof.

Jacobi's Theorem. Any symmetric matrix A can be transformed into a diagonal form $D \doteq S^{T}AS$ by a suitable choice of square matrix S, in which each of the diagonal elements of D is either ± 1 or 0.

Sylvester's Law of Inertia. Recall Jacobi's Theorem. The signature (n_0, n_+, n_-) , in which n_0 denotes the number of 0's and n_{\pm} the number of ± 1 's on the diagonal of D, is the same for any choice of S.

a. Use the axioms of a real inner product to infer the constraints on the matrix G, proceeding as follows.

- (5) **a1.** Show that, regardless the choice of G, the definition (\dagger) is consistent with the bilinearity axiom.
- (5) **a2.** Find the constraint on G (or, equivalently, on its entries g_{ij}) induced by the symmetry axiom.
- (5) **a3.** Likewise for the positivity and nondegeneracy axiom: $\langle v | v \rangle > 0$ for all *nonzero* vectors $v \in \mathbb{R}^n$.

(20) **3.** DISTRIBUTION THEORY

We consider a travelling wave in the form of a function $u : \mathbb{R}^2 \to \mathbb{R} : (x, t) \mapsto u(x, t) \doteq f(x - ct)$, in which $f : \mathbb{R} \to \mathbb{R} : x \mapsto f(x)$ is a univariate function.

(5) **a.** Show that if $f \in C^1(\mathbb{R})$, then $u \in C^1(\mathbb{R}^2)$ satisfies the following initial value problem:

$$(\star) \quad \left\{ \begin{array}{rcl} \frac{\partial u}{\partial x} + \frac{1}{c} \frac{\partial u}{\partial t} &= 0 & \text{ for } (x,t) \in \mathbb{R}^2, \\ u(x,0) &= f(x) & \text{ for } x \in \mathbb{R}. \end{array} \right.$$

(5) **b.** Show that if
$$\phi \in \mathscr{S}(\mathbb{R})$$
, then $\int_{-\infty}^{\infty} \frac{d\phi(x)}{dx} dx = 0$.

(10) **c.** Show that if $f \in \mathscr{P}(\mathbb{R}) \subset \mathscr{S}'(\mathbb{R})$, then $u \in \mathscr{S}'(\mathbb{R}^2)$ satisfies (\star) in distributional sense. (*Hint:* Do *not* assume $f \in C^1(\mathbb{R})$. Consider a change of variables y = x - ct for any fixed t.)

+

(30) 4. FOURIER TRANSFORMATION (EXAM JANUARY 17, 2011, PROBLEM 4)

The Fourier convention used in this problem for functions of one variable is as follows:

$$\widehat{f}(\omega) = \int_{-\infty}^{\infty} e^{-i\omega x} f(x) \, dx \quad \text{whence} \quad f(x) = \frac{1}{2\pi} \int_{-\infty}^{\infty} e^{i\omega x} \, \widehat{f}(\omega) \, d\omega \, .$$

We indicate the Fourier transform of a function f by $\mathscr{F}(f)$, and the inverse Fourier transform of a function \hat{f} by $\mathscr{F}^{-1}(\hat{f})$.

You may use the following standard limit, in which $z \in \mathbb{C}$ with real part $\operatorname{Re} z \in \mathbb{R}$:

$$\lim_{\operatorname{Re} z \to -\infty} e^z = 0$$

(5) **a.** Let \hat{f}^+ and \hat{f}^- be any pair of \mathbb{C} -valued functions defined in Fourier space, such that $\hat{f}^-(\omega) = \hat{f}^+(-\omega)$. Assuming that the Fourier inverses $f^{\pm} = \mathscr{F}^{-1}(\hat{f}^{\pm})$ exist, show that $f^-(x) = f^+(-x)$.

We now consider the following particular instances:

$$\widehat{f}_{s}^{+}(\omega) = \begin{cases} e^{-s\omega} & \text{if } \omega > 0\\ \frac{1}{2} & \text{if } \omega = 0\\ 0 & \text{if } \omega < 0 \end{cases}$$
(*)

and $\widehat{f}^-_s(\omega) = \widehat{f}^+_s(-\omega)$, in which s > 0 is a parameter.

(5) **b.** Give the explicit definition of $\hat{f}_s^-(\omega)$ in a form similar to that of $\hat{f}_s^+(\omega)$ in Eq. (*).

(5) **c1.** Compute
$$f_s^+(x) = \left(\mathscr{F}^{-1}(\widehat{f}_s^+)\right)(x)$$
.

- (5) **c2.** Compute $f_s^-(x) = \left(\mathscr{F}^{-1}(\widehat{f}_s^-)\right)(x)$.
- (5) **d.** We define $\hat{f}_s = \hat{f}_s^+ + \hat{f}_s^-$. Give the explicit form of $\hat{f}_s(\omega)$ and compute $f_s(x) = \left(\mathscr{F}^{-1}(\hat{f}_s)\right)(x)$.
- (5) **e.** Show that $\mathscr{F}(f_s * f_t) = \hat{f}_{s+t}$.

THE END