EXAMINATION MATHEMATICAL TECHNIQUES FOR IMAGE ANALYSIS

Course code: 2DMM10. Date: Friday January 24, 2020. Time: 09:00-12:00. Place: Vertigo 4.06 A.

READ THIS FIRST!

- Use a separate sheet of paper for each problem. Write your name and student ID on each paper.
- The exam consists of 4 problems. The maximum credit for each item is indicated in the margin.
- The use of course notes is allowed, provided it is in immaculate state. The use of other notes, calculator, laptop, smartphone, or any other equipment, is not allowed.
- Motivate your answers. You may provide your answers in Dutch or English.

GOOD LUCK!

1. Vector Space

We consider the subset H of points in \mathbb{R}^{3} given by

$$
(\star) \quad \mathrm{H} \doteq\left\{(x, y, z) \in \mathbb{R}^{3} \mid x^{2}+y^{2}=1\right\}
$$

equipped with internal and external operations $\oplus: \mathrm{H} \times \mathrm{H} \rightarrow \mathrm{H}$, respectively $\otimes: \mathbb{R} \times \mathrm{H} \rightarrow \mathrm{H}$, viz.

$$
\begin{aligned}
(x, y, z) \oplus(u, v, w) & \doteq(x u-y v, y u+x v, z+w) \\
\lambda \otimes(x, y, z) & \doteq(x \cos (2 \pi \lambda)-y \sin (2 \pi \lambda), y \cos (2 \pi \lambda)+x \sin (2 \pi \lambda), z+\lambda)
\end{aligned}
$$

For notational convenience we abbreviate elements of H as $X \doteq(x, y, z), U \doteq(u, v, w)$ et cetera.
a. Prove closure, i.e. show that $X \oplus U \in \mathrm{H}$ and $\lambda \otimes X \in \mathrm{H}$ for all $X, U \in \mathrm{H}$ and $\lambda \in \mathbb{R}$.
b. Show that $X \in \mathrm{H}$ can be parametrized such that the constraint in (\star) is automatically fulfilled.
(Hint: Introduce an angle $\phi \in \mathbb{R}$ and consider polar coordinates for the (x, y)-plane.)

We now investigate whether (\star), furnished with the operators \oplus and \otimes, satisfies all vector space axioms. We consider the abelian group requirement for \oplus first.

You may use the following lemma.

Lemma. For $\phi, \theta \in \mathbb{R}$ we have

$$
\begin{aligned}
\cos (\phi \pm \theta) & =\cos \phi \cos \theta \mp \sin \phi \sin \theta \\
\sin (\phi \pm \theta) & =\sin \phi \cos \theta \pm \cos \phi \sin \theta
\end{aligned}
$$

(5) c1. Prove associativity: $(X \oplus U) \oplus A=X \oplus(U \oplus A)$ for all $X, U, A \in \mathrm{H}$.
(Hint: Exploit your observation in b and use the lemma.)
c2. Prove commutativity: $X \oplus U=U \oplus X$ for all $X, U \in \mathrm{H}$.
c3. Show that $E \doteq(1,0,0) \in \mathrm{H}$ is the neutral element for \oplus.
d. Prove this conjecture by constructing the explicit form of $\Lambda \in H$ given $\lambda \in \mathbb{R}$.
e. Show that H is not a vector space by showing that \otimes violates the axioms for scalar multiplication.
(Hint: The conjecture may be helpful.)

2. InNER PRODUCT

For $v, w \in \mathbb{R}^{n}$, endowed with the standard vector space structure, we wish to define a real inner product

$$
(\dagger) \quad\langle v \mid w\rangle \doteq v^{\top} \mathrm{G} w
$$

in which, in terms of standard vector-matrix notation, with real entries $v_{i}, g_{i j}$ and $w_{j}, 1 \leq i, j \leq n$,

$$
v^{\top} \doteq\left(\begin{array}{lll}
v_{1} & \ldots & v_{n}
\end{array}\right), \quad \mathrm{G} \doteq\left(\begin{array}{ccc}
g_{11} & \ldots & g_{1 n} \\
\vdots & & \vdots \\
g_{n 1} & \ldots & g_{n n}
\end{array}\right), \quad w \doteq\left(\begin{array}{c}
w_{1} \\
\vdots \\
w_{n}
\end{array}\right)
$$

The following theorems may be used without proof.
Jacobi's Theorem. Any symmetric matrix A can be transformed into a diagonal form $\mathrm{D} \doteq \mathrm{S}^{\top} \mathrm{AS}$ by a
suitable choice of square matrix S, in which each of the diagonal elements of D is either ± 1 or 0 .
Sylvester's Law of Inertia. Recall Jacobi's Theorem. The signature (n_{0}, n_{+}, n_{-}), in which n_{0} denotes the number of 0 's and $n_{ \pm}$the number of ± 1 's on the diagonal of D , is the same for any choice of S .
a. Use the axioms of a real inner product to infer the constraints on the matrix G, proceeding as follows.
c4. State the explicit form of the antivector $(-X) \in \mathrm{H}$ for any given $X \in \mathrm{H}$, and prove $(-X) \oplus X=E$.

Next we aim to verify the vector space axioms involving \otimes.

Conjecture. For any $X \in \mathrm{H}$ and $\lambda \in \mathbb{R}$ there exists a $\Lambda \in \mathrm{H}$ such that

$$
\lambda \otimes X=\Lambda \oplus X
$$

a1. Show that, regardless the choice of G, the definition (\dagger) is consistent with the bilinearity axiom.
a2. Find the constraint on G (or, equivalently, on its entries $g_{i j}$) induced by the symmetry axiom.
a3. Likewise for the positivity and nondegeneracy axiom: $\langle v \mid v\rangle>0$ for all nonzero vectors $v \in \mathbb{R}^{n}$.

3. Distribution Theory

We consider a travelling wave in the form of a function $u: \mathbb{R}^{2} \rightarrow \mathbb{R}:(x, t) \mapsto u(x, t) \doteq f(x-c t)$, in which $f: \mathbb{R} \rightarrow \mathbb{R}: x \mapsto f(x)$ is a univariate function.
(10) c. Show that if $f \in \mathscr{P}(\mathbb{R}) \subset \mathscr{S}^{\prime}(\mathbb{R})$, then $u \in \mathscr{S}^{\prime}\left(\mathbb{R}^{2}\right)$ satisfies (\star) in distributional sense. (Hint: Do not assume $f \in C^{1}(\mathbb{R})$. Consider a change of variables $y=x-c t$ for any fixed t.)

The Fourier convention used in this problem for functions of one variable is as follows:

$$
\widehat{f}(\omega)=\int_{-\infty}^{\infty} e^{-i \omega x} f(x) d x \quad \text { whence } \quad f(x)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} e^{i \omega x} \widehat{f}(\omega) d \omega .
$$

We indicate the Fourier transform of a function f by $\mathscr{F}(f)$, and the inverse Fourier transform of a function \widehat{f} by $\mathscr{F}^{-1}(\widehat{f})$.

You may use the following standard limit, in which $z \in \mathbb{C}$ with real part $\operatorname{Re} z \in \mathbb{R}$:

$$
\lim _{\operatorname{Re} z \rightarrow-\infty} e^{z}=0
$$

a. Let \widehat{f}^{+}and \widehat{f}^{-}be any pair of \mathbb{C}-valued functions defined in Fourier space, such that $\widehat{f}^{-}(\omega)=$ $\widehat{f}^{+}(-\omega)$. Assuming that the Fourier inverses $f^{ \pm}=\mathscr{F}^{-1}\left(\widehat{f}^{ \pm}\right)$exist, show that $f^{-}(x)=f^{+}(-x)$.

We now consider the following particular instances:

$$
\widehat{f}_{s}^{+}(\omega)= \begin{cases}e^{-s \omega} & \text { if } \omega>0 \\ \frac{1}{2} & \text { if } \omega=0 \\ 0 & \text { if } \omega<0\end{cases}
$$

and $\widehat{f}_{s}^{-}(\omega)=\widehat{f}_{s}^{+}(-\omega)$, in which $s>0$ is a parameter.
b. Give the explicit definition of $\widehat{f}_{s}^{-}(\omega)$ in a form similar to that of $\widehat{f}_{s}^{+}(\omega)$ in Eq. (\star).
c1. Compute $f_{s}^{+}(x)=\left(\mathscr{F}^{-1}\left(\widehat{f}_{s}^{+}\right)\right)(x)$.
(5)
c2. Compute $f_{s}^{-}(x)=\left(\mathscr{F}^{-1}\left(\widehat{f}_{s}^{-}\right)\right)(x)$.
(5) e. Show that $\mathscr{F}\left(f_{s} * f_{t}\right)=\widehat{f}_{s+t}$.

