
EXAMINATION TENSOR CALCULUS AND DIFFERENTIAL GEOMETRY
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Read this first!

• Write your name and student identification number on each paper.

• The exam consists of 4 problems. The maximum credit for each item is indicated in the margin.

• Motivate your answers.

• You may consult the course notes “Tensorrekening en Differentiaalmeetkunde (2F800)” by Jan de Graaf,
and the draft notes “Tensor Calculus and Differential Geometry (2F800)” by Luc Florack without warranty.

1. PULL BACK OF INNER PRODUCT.(30)

We consider two inner product spaces, E and F , and a linear mapping A : E −→ F . The inner product
on F is denoted by G : F × F −→ R : (x,y) 7→ G(x,y), and its pull back under A is defined as
A∗G : E × E −→ R : (u,v) 7→ A∗G(u,v) = G(A(u), A(v)).

a. Demonstrate with the help of an example that if we impose no further conditions on the linear(10)
mapping A, then A∗G is not necessarily an inner product on E. (Hint: Consider E = R3, F = R2.)

Take E = R3, F = R2, with Euclidean metric G, and A : R3 −→ R2 : (v1, v2, v3) 7→ (v1, v2) relative to a standard Cartesian basis.

Then A∗G : R3 × R3 −→ R : (u,v) 7→ u1v1 + u2v2. This is not an inner product as it fails to be non-degenerate. Note that A is

surjective, but not one-to-one.

b. Show that under suitable condition on A, A∗G is an inner product on E, and state this condition.(10)

Symmetry: A∗G(u,v) = G(A(u), A(v)) = G(A(v), A(u)) = A∗G(v,u) for all u,v ∈ E.

Linearity: A∗G(λu + µv,w) = G(A(λu + µv), A(w)) = G(λA(u) + µA(v), A(w)) = λG(A(u), A(w)) + µG(A(v), A(w)) =
λA∗G(u,w) + µA∗G(v,w).

Non-negativity: A∗G(v,v) = G(A(v), A(v)) ≥ 0. Non-degeneracy: A∗G(v,v) = G(A(v), A(v)) = 0 iff A(v) = 0. If A is

one-to-one this is equivalent to v = 0, and hence in this case A∗G defines an inner product.

LetAij be the mixed holor ofA, i.e. if v = viei relative to basis {ei} ofE, thenA(v) = viAji fj relative
to basis {fi} of F . Furthermore we define the covariant holors of the metric tensors, gij = G(fi, fj),
and hij = A∗G(ei, ej).

c. Show that hij = AkiA
`
jgk`.(10)

Using A(ei) = Aki fk we obtain hij = A∗G(ei, ej) = G(A(ei), A(ej)) = G(Aki fk, A
`
jf`) = Aki A

`
jG(fk, f`) = Aki A

`
jgk`.

♣



2. DEFORMATION AND STRAIN TENSORS.(40)

We consider a smoothly deformable object in n-dimensional Euclidean space (which may be interpreted
as a vector space with arbitrary origin, isomorphic to any of its local tangent spaces). The collection of
material points labelled by their initial positions at time t0 constitutes the reference configuration.

We consider space furnished with a coordinate system, denoting the reference configuration by M ⊂ Rn.
Each material point is thus labeled by a coordinate tuple X ∈ M.

At (fixed) time t > t0 the object has undergone a deformation due to internal and external forces. The
details of the forces are irrelevant in this problem. The deformation causes a smooth displacement of
material points, which can be described by the following deformation map1:

f : M −→ N : X 7→ x = x(X, t) ,

with X = x(X, t0). Here N ⊂ Rn denotes the new configuration, and x ∈ N the new position of the
material point with reference label X ∈ M.

Although M and N are both embedded in the same n-dimensional Euclidean space, it is convenient
to use independent coordinatizations for each. In particular we thus assume no a priori relationship
between the local bases {ei} of TMX and {fα} of TNx.

On M the components of the metric tensor relative to the reference basis {ei} are gij = (ei|ej)TMX
,

with dual gij . On N the components of the metric tensor relative to the new basis {fα} are hαβ =
(fα|fβ)TNx

, with dual hαβ .

The deformation tensor is the differential f∗
def
= df of the deformation map. Its components relative to

{ei} and {fα} are indicated by Fαi =
∂xα

∂Xi
, i.e.

f∗ : TMX −→ TNx : v 7→ w = f∗(v) = df(v) = viFαi fα ,

with v = viei ∈ TMX and w = wαfα ∈ TNx, with wα = viFαi .

The map fT
∗ : TNx −→ TMX is induced from f∗ : TMX −→ TNx via transposition:

(f∗(v)|w)TNx
=
(
v|fT
∗ (w)

)
TMX

,

in which ( · | · ) denotes the inner product on the tangent space indicated by the attached subscript.

The Euler-Lagrange strain tensor E is defined as the mapping

E =
1

2

(
fT
∗ ◦ f∗ − idTMX

)
: TMX −→ TMX : v 7→ E(v) = viEji ej .

a. Show that the components of E relative to {ej} are given by Eij =
1

2

(
gi`hαβF

α
` F

β
j − δ

i
j

)
.(10)

1We adhere to common malpractice by using symbols x(X, t0) = X and x(X, t) = x to denote either mappings or
independent variables, depending on context. No confusion is likely to arise.



Set v = viei ∈ TMX, then f∗(v) = viFαi fα ∈ TNx by definition. If w = wαfα ∈ TNx, then fT
∗ (w) = gijFαj w

βhαβei ∈ TMX. To

see this, insert the decompositions f∗(v) = viFαi fα and w = wαfα into the defining equation, (f∗(v)|w)TNx
=
(
v|fT

∗ (w)
)
TMX

, and

solve for the components ui of fT
∗ (w) = uiei. Taking into account that this must hold for all v ∈ TMX this yields ui = gijFαj w

βhαβ .

Substituting w by f∗(v) then finally yields E(v) = vjEijej = 1
2

(
ui − vi

)
ei = 1

2
vj
(
gi`hαβF

α
` F

β
j − δ

i
j

)
ei.

An isometric deformation is a rigid body motion, which by definition preserves inner products, i.e.
(f∗(u)|f∗(v))TNx

= (u|v)TMX
.

b. Show that E vanishes identically under isometric deformations. Thus unlike the deformation tensor,(10)
the strain tensor captures genuinely nonrigid deformations.

An isometric deformation by definition preserves inner products, i.e. fT
∗ ◦ f∗ = idTMX

, whence E = 0 identically.

c. If the bases {ei} is a coordinate basis, i.e. ei = ∂/∂Xi, and if {fα} is the corresponding coordinate(10)
basis induced by the deformation map, i.e. fα = ∂/∂xα with x = x(X, t), show that gij = hαβF

α
i F

β
j ,

and hence that Eij = 0 regardless of the deformation. Can you explain this result in words?

By the chain rule we have hαβ f̂α ⊗ f̂β = hαβdx
α ⊗ dxβ = hαβ

∂xα

∂Xi
∂xβ

∂Xj
dXi ⊗ dXj = hαβF

α
i F

β
j dX

i ⊗ dXj = gij ê
i ⊗ êj

in corresponding points. If your yardsticks employed for measuring lengths and angles deform along with your deformable object, then no

strains—material length changes—can be observed.

d. Vox populi in tensor calculus books stipulates that if the holor of a tensor relative to any given basis(10)
vanishes, then it vanishes relative to any other basis, i.e. the tensor is trivial. However, in problem c we
have Eij = 0, whereas in problem a we have Eij 6= 0 in general. Explain this paradox.

The conjecture that a tensor vanishes if its holor vanishes pertains to a single basis {ei} of TMX, respectively to a composite basis of outer

products of {ei} and its dual basis {êi}.

♣

3. IMAGE INTRINSIC BASIS.(30)

In this problem we model a scalar image f : R2 −→ R2 : (x, y) 7→ f(x, y) as a C1(R2)-function
on the Euclidean plane R2, interpreted as a vector space with standard inner product relative to global
Cartesian coordinates (x, y) ∈ R2, which induce a global Cartesian basis {∂x, ∂y} of R2. The tangent
space TR2

(x,y) at any given point (x, y) ∈ R2 is spanned by a “local copy” {∂x, ∂y} of this global basis.

We henceforth consider only regular points in the image, i.e. point at which∇f 6= 0. At a regular point
we define a new covector basis intrinsically coupled to the local image gradient, viz.

ê1 = ∗df = εy[df and ê2 = df .

Here, ∗ :
∧

1(TR2
(x,y))→

∧
1(TR2

(x,y)) is the Hodge star operator.

a. Give the components of ê1 and ê2 relative to the local Cartesian cotangent basis {dx, dy}.(10)

We have, respectively, ê1 = ∗df = εy[df = −fydx + fxdy and ê2 = fxdx + fydy. Here, fx and fy are shorthands for the partial

derivatives of f w.r.t. x and y.



b. Give the components of the corresponding basis vectors e1 and e2 dual to ê1 and ê2 relative to the(10)
local Cartesian tangent basis {∂x, ∂y}.

We have e1 = −
fy

f2x + f2y
∂x +

fx

f2x + f2y
∂y , respectively e2 =

fx

f2x + f2y
∂x +

fy

f2x + f2y
∂y .

c. Indicate explicitly how to compute the Christoffel symbols Γ
k
ij relative to the image intrinsic basis,(10)

assuming that the Christoffel symbols Γkij = 0 for the Cartesian basis. Do not compute these symbols.

We may use the defining formula for the Christoffel symbols in the image intrinsic basis, Γ
k
ij =

〈
êk,∇ejei

〉
, together with the defining

properties of the affine connection, which allow us to rewrite these into linear combinations of
〈
êi, ei

〉
. Explicit expressions can be obtained

using the expressions derived under a and b. In the case at hand we may write

ei = aji∂j and êi = bijdx
j ,

with matrices A = {aji}i,j=1,2, B = {bji}i,j=1,2,

A =

 −
fy

f2x + f2y

fx

f2x + f2y
fx

f2x + f2y

fy

f2x + f2y

 and B =

(
−fy fx
fx fy

)
.

The subscript is the row index. In this notation we have
〈
êi, ej

〉
= a`jb

i
k

〈
dxk, ∂`

〉
= a`jb

i
` = δij .

THE END


