EXAMINATION TENSOR CALCULUS AND DIFFERENTIAL GEOMETRY

Course code: 2F800. Date: Friday July 1, 2011. Time: 14h00-17h00. Place: HG 10.01 C 3

Read this first!

- Write your name and student identification number on each paper.
- The exam consists of 4 problems. The maximum credit for each item is indicated in the margin.
- Motivate your answers.
- You may consult the course notes "Tensorrekening en Differentiaalmeetkunde (2F800)" by Jan de Graaf, and the draft notes "Tensor Calculus and Differential Geometry (2F800)" by Luc Florack without warranty.

1. Pull Back of Inner Product.

We consider two inner product spaces, E and F, and a linear mapping $A: E \longrightarrow F$. The inner product on F is denoted by $G: F \times F \longrightarrow \mathbb{R}:(\mathbf{x}, \mathbf{y}) \mapsto G(\mathbf{x}, \mathbf{y})$, and its pull back under A is defined as $A^{*} G: E \times E \longrightarrow \mathbb{R}:(\mathbf{u}, \mathbf{v}) \mapsto A^{*} G(\mathbf{u}, \mathbf{v})=G(A(\mathbf{u}), A(\mathbf{v}))$.
(10) a. Demonstrate with the help of an example that if we impose no further conditions on the linear mapping A, then $A^{*} G$ is not necessarily an inner product on E. (Hint: Consider $E=\mathbb{R}^{3}, F=\mathbb{R}^{2}$.)
(10) b. Show that under suitable condition on $A, A^{*} G$ is an inner product on E, and state this condition.

Let A_{j}^{i} be the mixed holor of A, i.e. if $\mathbf{v}=v^{i} \mathbf{e}_{i}$ relative to basis $\left\{\mathbf{e}_{i}\right\}$ of E, then $A(\mathbf{v})=v^{i} A_{i}^{j} \mathbf{f}_{j}$ relative to basis $\left\{\mathbf{f}_{i}\right\}$ of F. Furthermore we define the covariant holors of the metric tensors, $g_{i j}=G\left(\mathbf{f}_{i}, \mathbf{f}_{j}\right)$, and $h_{i j}=A^{*} G\left(\mathbf{e}_{i}, \mathbf{e}_{j}\right)$.
c. Show that $h_{i j}=A_{i}^{k} A_{j}^{\ell} g_{k \ell}$.

2. Deformation and Strain Tensors.

We consider a smoothly deformable object in n-dimensional Euclidean space (which may be interpreted as a vector space with arbitrary origin, isomorphic to any of its local tangent spaces). The collection of material points labelled by their initial positions at time t_{0} constitutes the reference configuration.

We consider space furnished with a coordinate system, denoting the reference configuration by $\mathrm{M} \subset \mathbb{R}^{n}$. Each material point is thus labeled by a coordinate tuple $\mathbf{X} \in \mathbf{M}$.

At (fixed) time $t>t_{0}$ the object has undergone a deformation due to internal and external forces. The details of the forces are irrelevant in this problem. The deformation causes a smooth displacement of material points, which can be described by the following deformation map ${ }^{1}$:

$$
f: \mathbf{M} \longrightarrow \mathbf{N}: \mathbf{X} \mapsto \mathbf{x}=\mathbf{x}(\mathbf{X}, t),
$$

[^0]with $\mathbf{X}=\mathbf{x}\left(\mathbf{X}, t_{0}\right)$. Here $\mathbf{N} \subset \mathbb{R}^{n}$ denotes the new configuration, and $\mathbf{x} \in \mathrm{N}$ the new position of the material point with reference label $\mathbf{X} \in \mathrm{M}$.

Although M and N are both embedded in the same n-dimensional Euclidean space, it is convenient to use independent coordinatizations for each. In particular we thus assume no a priori relationship between the local bases $\left\{\mathbf{e}_{i}\right\}$ of $\mathrm{TM}_{\mathbf{X}}$ and $\left\{\mathbf{f}_{\alpha}\right\}$ of $\mathrm{TN}_{\mathbf{x}}$.

On M the components of the metric tensor relative to the reference basis $\left\{\mathbf{e}_{i}\right\}$ are $g_{i j}=\left(\mathbf{e}_{i} \mid \mathbf{e}_{j}\right) \mathrm{TM}_{\mathrm{x}}$, with dual $g^{i j}$. On N the components of the metric tensor relative to the new basis $\left\{\mathbf{f}_{\alpha}\right\}$ are $h_{\alpha \beta}=$ $\left(\mathbf{f}_{\alpha} \mid \mathbf{f}_{\beta}\right) \mathrm{TN}_{\mathrm{x}}$, with dual $h^{\alpha \beta}$.

The deformation tensor is the differential $f_{*} \stackrel{\text { def }}{=} d f$ of the deformation map. Its components relative to $\left\{\mathbf{e}_{i}\right\}$ and $\left\{\mathbf{f}_{\alpha}\right\}$ are indicated by $F_{i}^{\alpha}=\frac{\partial x^{\alpha}}{\partial X^{i}}$, i.e.

$$
f_{*}: \mathrm{TM}_{\mathbf{X}} \longrightarrow \mathrm{TN}_{\mathbf{x}}: \mathbf{v} \mapsto \mathbf{w}=f_{*}(\mathbf{v})=d f(\mathbf{v})=v^{i} F_{i}^{\alpha} \mathbf{f}_{\alpha}
$$

with $\mathbf{v}=v^{i} \mathbf{e}_{i} \in \mathrm{TM}_{\mathbf{X}}$ and $\mathbf{w}=w^{\alpha} \mathbf{f}_{\alpha} \in \mathrm{TN}_{\mathbf{x}}$, with $w^{\alpha}=v^{i} F_{i}^{\alpha}$.
The map $f_{*}^{\mathrm{T}}: \mathrm{TN}_{\mathbf{x}} \longrightarrow \mathrm{TM}_{\mathbf{X}}$ is induced from $f_{*}: \mathrm{TM}_{\mathbf{X}} \longrightarrow \mathrm{TN}_{\mathbf{x}}$ via transposition:

$$
\left(f_{*}(\mathbf{v}) \mid \mathbf{w}\right)_{\mathrm{TN}_{\mathbf{x}}}=\left(\mathbf{v} \mid f_{*}^{\mathrm{T}}(\mathbf{w})\right)_{\mathrm{TM}_{\mathbf{x}}}
$$

in which $(\cdot \mid \cdot)$ denotes the inner product on the tangent space indicated by the attached subscript.
The Euler-Lagrange strain tensor E is defined as the mapping

$$
E=\frac{1}{2}\left(f_{*}^{\mathrm{T}} \circ f_{*}-\mathrm{id}_{\mathrm{TM}_{\mathbf{x}}}\right): \mathrm{TM}_{\mathbf{X}} \longrightarrow \mathrm{TM}_{\mathbf{X}}: \mathbf{v} \mapsto E(\mathbf{v})=v^{i} E_{i}^{j} \mathbf{e}_{j}
$$

a. Show that the components of E relative to $\left\{\mathbf{e}_{j}\right\}$ are given by $E_{j}^{i}=\frac{1}{2}\left(g^{i \ell} h_{\alpha \beta} F_{\ell}^{\alpha} F_{j}^{\beta}-\delta_{j}^{i}\right)$.

An isometric deformation is a rigid body motion, which by definition preserves inner products, i.e. $\left(f_{*}(\mathbf{u}) \mid f_{*}(\mathbf{v})\right)_{\mathbf{T N}_{\mathbf{x}}}=(\mathbf{u} \mid \mathbf{v})_{\mathbf{T M}_{\mathbf{x}}}$.
(10) b. Show that E vanishes identically under isometric deformations. Thus unlike the deformation tensor, the strain tensor captures genuinely nonrigid deformations.
(10) c. If the bases $\left\{\mathbf{e}_{i}\right\}$ is a coordinate basis, i.e. $\mathbf{e}_{i}=\partial / \partial X^{i}$, and if $\left\{\mathbf{f}_{\alpha}\right\}$ is the corresponding coordinate basis induced by the deformation map, i.e. $\mathbf{f}_{\alpha}=\partial / \partial x^{\alpha}$ with $\mathbf{x}=\mathbf{x}(\mathbf{X}, t)$, show that $g_{i j}=h_{\alpha \beta} F_{i}^{\alpha} F_{j}^{\beta}$, and hence that $E_{j}^{i}=0$ regardless of the deformation. Can you explain this result in words?
(10) d. Vox populi in tensor calculus books stipulates that if the holor of a tensor relative to any given basis vanishes, then it vanishes relative to any other basis, i.e. the tensor is trivial. However, in problem c we have $E_{j}^{i}=0$, whereas in problem a we have $E_{j}^{i} \neq 0$ in general. Explain this paradox.

In this problem we model a scalar image $f: \mathbb{R}^{2} \longrightarrow \mathbb{R}^{2}:(x, y) \mapsto f(x, y)$ as a $C^{1}\left(\mathbb{R}^{2}\right)$-function on the Euclidean plane \mathbb{R}^{2}, interpreted as a vector space with standard inner product relative to global Cartesian coordinates $(x, y) \in \mathbb{R}^{2}$, which induce a global Cartesian basis $\left\{\partial_{x}, \partial_{y}\right\}$ of \mathbb{R}^{2}. The tangent space $\mathbb{T R}^{2}{ }_{(x, y)}$ at any given point $(x, y) \in \mathbb{R}^{2}$ is spanned by a "local copy" $\left\{\partial_{x}, \partial_{y}\right\}$ of this global basis.

We henceforth consider only regular points in the image, i.e. point at which $\nabla f \neq 0$. At a regular point we define a new covector basis intrinsically coupled to the local image gradient, viz.

$$
\left.\hat{\mathbf{e}}^{1}=* d f=\boldsymbol{\epsilon}\right\lrcorner b d f \quad \text { and } \quad \hat{\mathbf{e}}^{2}=d f .
$$

Here, $*: \bigwedge_{1}\left(\mathbb{T R}^{2}{ }_{(x, y)}\right) \rightarrow \bigwedge_{1}\left(\mathrm{TR}^{2}{ }_{(x, y)}\right)$ is the Hodge star operator.
(10) a. Give the components of $\hat{\mathbf{e}}^{1}$ and $\hat{\mathbf{e}}^{2}$ relative to the local Cartesian cotangent basis $\{d x, d y\}$.
(10) b. Give the components of the corresponding basis vectors \mathbf{e}_{1} and \mathbf{e}_{2} dual to $\hat{\mathbf{e}}^{1}$ and $\hat{\mathbf{e}}^{2}$ relative to the local Cartesian tangent basis $\left\{\partial_{x}, \partial_{y}\right\}$.
(10) c. Indicate explicitly how to compute the Christoffel symbols $\bar{\Gamma}_{i j}^{k}$ relative to the image intrinsic basis, assuming that the Christoffel symbols $\Gamma_{i j}^{k}=0$ for the Cartesian basis. Do not compute these symbols.

THE END

[^0]: ${ }^{1}$ We adhere to common malpractice by using symbols $\mathbf{x}\left(\mathbf{X}, t_{0}\right)=\mathbf{X}$ and $\mathbf{x}(\mathbf{X}, t)=\mathbf{x}$ to denote either mappings or independent variables, depending on context. No confusion is likely to arise.

