EXAMINATION TENSOR CALCULUS AND DIFFERENTIAL GEOMETRY

Course code: 2F800. Date: Monday April 11, 2011. Time: 14h00-17h00. Place: HG 6.96

Read this first!

- Write your name and student identification number on each paper.
- The exam consists of 4 problems. The maximum credit for each item is indicated in the margin.
- Motivate your answers.
- You may consult the course notes "Tensorrekening en Differentiaalmeetkunde (2F800)" by Jan de Graaf, and the draft notes "Tensor Calculus and Differential Geometry (2F800)" by Luc Florack without warranty.

(20) 1. COFACTOR MATRIX.

The cofactor matrix of a square matrix A with entries $A_{ij} \in \mathbb{R}$, (i, j = 1, ..., n), is the matrix \hat{A} defined in terms of its entries

$$\tilde{A}^{ij} = \frac{\partial \det A}{\partial A_{ij}} \,.$$

(5) **a.** Show that if A is symmetric, i.e. $A_{ij} = A_{ji}$, then also \hat{A} is symmetric.

We take A to be a symmetric 3×3 matrix:

$$A = \begin{pmatrix} A_{11} & A_{12} & A_{13} \\ A_{12} & A_{22} & A_{23} \\ A_{13} & A_{23} & A_{33} \end{pmatrix} \,.$$

(5) **b.** Give the explicit matrix form of \hat{A} .

Let G(x) be the Gram matrix corresponding to a Riemannian metric field at $x \in \mathbb{R}^n$. Its covariant components $g_{ij}(x)$ vary smoothly with x. The inverse $G^{-1}(x)$ has contravariant components $g^{ij}(x)$. Its determinant is indicated by $g(x) = \det G(x)$. By ∂_k we mean $\partial/\partial x^k$.

- (5) **c.** Show that $\nabla(\ln \det G) = \operatorname{tr}(G^{-1}\nabla G)$ by showing that $\partial_k \ln g = g^{ij}\partial_k g_{ij}$.
- (5) **d.** Show that ∂_k ln g = 2Γⁱ_{ik}, in which Γⁱ_{jk} are the Christoffel symbols corresponding to the Lévi-Civita connection.
 (*Hint:* Metric coefficients are "covariantly constant".)

(20) 2. CANONICAL MOMENTUM.

Let $x^i(t) \in \mathbb{R}$ denote the *i*-th coordinate of a material point particle in *n*-dimensional Euclidean space, with i = 1, ..., n, at time $t \in \mathbb{R}$, and $\dot{x}^i(t) = dx^i(t)/dt$. We introduce the so-called Lagrangian

$$L: \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}: (x, \dot{x}) \mapsto L(x, \dot{x}),$$

i.e. a real-valued function of the particle's position and velocity. We consider a spatial reparametrization of the form¹ $x^i : \mathbb{R}^n \to \mathbb{R} : \overline{x} \mapsto x^i(\overline{x})$, in terms of new independent variables $\overline{x} \in \mathbb{R}^n$. Via substitution, and using the chain rule, we then define the reparametrized Lagrangian $\overline{L}(\overline{x}, \overline{x}) = L(x, \overline{x})$.

(5) **a.** Show that the components of the particle's velocity "transforms as a vector" by showing that

$$\dot{x}^i = \frac{\partial x^i}{\partial \overline{x}^j} \, \dot{\overline{x}}^j \, .$$

(Thus we may regard x^i as a function of \overline{x}^j , and \dot{x}^i as a function of \overline{x}^j and $\dot{\overline{x}}^k$, i, j, k = 1, ..., n.)

The components of the so-called canonical momentum relative to a coordinate basis are defined as

$$p_i = \frac{\partial L(x, \dot{x})}{\partial \dot{x}^i}$$

Likewise we require that

$$\overline{p}_i = \frac{\partial \overline{L}(\overline{x}, \dot{\overline{x}})}{\partial \dot{\overline{x}}^i}$$

(10) **b.** Show that the components of the canonical momentum "transforms as a covector" by showing that

$$\overline{p}_i = \frac{\partial x^j}{\partial \overline{x}^i} \, p_j \, .$$

*

(5) **c.** Show that $p_i \dot{x}^i = \overline{p}_i \dot{\overline{x}}^i$.

¹We adhere to common malpractice by using the same symbol x to denote both an independent variable as well as a mapping. It should be clear from the context which of these two interpretations is applicable.

(20) **3.** EXTERIOR DERIVATIVE.

Let $\omega^k(x) = \omega_{i_1...i_k}(x) dx^{i_1} \wedge ... \wedge dx^{i_k} \in \bigwedge_k(\mathbb{R}^n)$ be an antisymmetric covariant tensor field of rank k (k-form for brevity), with $x \in \mathbb{R}^n$. The tangent space \mathbb{TR}^n_y at any point $y \in \mathbb{R}^n$ may be identified with \mathbb{R}^n . The *exterior derivative* of ω is the (k + 1)-form given by

$$d\omega^k(x) = d\omega_{i_1\dots i_k}(x) \wedge dx^{i_1} \wedge \dots \wedge dx^{i_k} \in \bigwedge_{k+1}(\mathbb{R}^n),$$

with $df(x) \stackrel{\text{def}}{=} \partial_i f(x) dx^i$ for a sufficiently smooth scalar field (or 0-form) $f : \mathbb{R}^n \to \mathbb{R}$.

- (5) **a.** Show that $d\omega^n(x) = 0$ regardless the choice of $\omega^n(x) \in \bigwedge_n(\mathbb{R}^n)$.
- (5) **b.** Show that $d^2\omega^k(x) \stackrel{\text{def}}{=} dd\omega^k(x) = 0$ regardless the choice of $\omega^k(x) \in \bigwedge_k(\mathbb{R}^n)$ and $k = 0, \dots, n$. We now consider n = 3, and abbreviate $x^1 = x$, $x^2 = y$, $x^3 = z$, $dx^1 = dx$, $dx^2 = dy$, $dx^3 = dz$, etc.
- (5) **c.** Give the general form of $\omega^1(x, y, z) \in \bigwedge_1(\mathbb{R}^3)$ and compute the explicit form of $d\omega^1(x, y, z)$.
- (5) **d.** Give the general form of $\omega^2(x, y, z) \in \bigwedge_2(\mathbb{R}^3)$ and compute the explicit form of $d\omega^2(x, y, z)$.

÷

(40) 4. CURVATURE OPERATOR.

In this problem M is an *n*-dimensional smooth manifold. For the sake of simplicity we identify it with \mathbb{R}^n , i.e. we de-emphasize the role of coordinate charts. Linear superposition acts pointwise, i.e. vector arguments and scalar multipliers are to be regarded as (local samples of) smooth functions of $x \in M$.

For $\mathbf{v}, \mathbf{w} \in TM$ the (antisymmetric) curvature operator is defined as $\mathscr{R}(\mathbf{v}, \mathbf{w}) = [\nabla_{\mathbf{v}}, \nabla_{\mathbf{w}}] - \nabla_{[\mathbf{v}, \mathbf{w}]}$.

For $\mathbf{u}, \mathbf{v}, \mathbf{w} \in TM$, $\widetilde{\mathbf{z}} \in T^*M$, the Riemann curvature tensor is defined as $\mathbf{R}(\widetilde{\mathbf{z}}, \mathbf{u}, \mathbf{v}, \mathbf{w}) = \langle \widetilde{\mathbf{z}}, \mathscr{R}(\mathbf{v}, \mathbf{w})\mathbf{u} \rangle$.

- (10) **a.** Let $\lambda : \mathbf{M} \to \mathbb{R}$ be a smooth scalar field. Show that $\mathscr{R}(\lambda \mathbf{v}, \mathbf{w}) = \lambda \mathscr{R}(\mathbf{v}, \mathbf{w})$.
- (10) **b.** Given the result of the previous problem, show that $\mathscr{R}(\mathbf{v}, \lambda \mathbf{w}) = \lambda \mathscr{R}(\mathbf{v}, \mathbf{w})$.
- (10) **c.** Show that $\mathscr{R}(\mathbf{v}, \mathbf{w})(\lambda \mathbf{u}) = \lambda \mathscr{R}(\mathbf{v}, \mathbf{w})\mathbf{u}$. (*Hint:* Argue why it suffices to consider $\mathbf{v} = \partial_i, \mathbf{w} = \partial_j$.)
- (10) **d.** Show that $\mathbf{R}(\mathbf{\tilde{z}}, \mathbf{u}, \mathbf{v}, \mathbf{w})$ is quadrilinear.

THE END