# EXAMINATION TENSOR CALCULUS AND DIFFERENTIAL GEOMETRY 

Course code: 2F800. Date: Monday April 11, 2011. Time: 14h00-17h00. Place: HG 6.96

## Read this first!

- Write your name and student identification number on each paper.
- The exam consists of 4 problems. The maximum credit for each item is indicated in the margin.
- Motivate your answers.
- You may consult the course notes "Tensorrekening en Differentiaalmeetkunde (2F800)" by Jan de Graaf, and the draft notes "Tensor Calculus and Differential Geometry (2F800)" by Luc Florack without warranty.


## 1. Cofactor Matrix.

The cofactor matrix of a square matrix $A$ with entries $A_{i j} \in \mathbb{R},(i, j=1, \ldots, n)$, is the matrix $\tilde{A}$ defined in terms of its entries

$$
\tilde{A}^{i j}=\frac{\partial \operatorname{det} A}{\partial A_{i j}}
$$

(5) a. Show that if $A$ is symmetric, i.e. $A_{i j}=A_{j i}$, then also $\tilde{A}$ is symmetric.

We take $A$ to be a symmetric $3 \times 3$ matrix:

$$
A=\left(\begin{array}{ccc}
A_{11} & A_{12} & A_{13} \\
A_{12} & A_{22} & A_{23} \\
A_{13} & A_{23} & A_{33}
\end{array}\right)
$$

(5) b. Give the explicit matrix form of $\tilde{A}$.

Let $G(x)$ be the Gram matrix corresponding to a Riemannian metric field at $x \in \mathbb{R}^{n}$. Its covariant components $g_{i j}(x)$ vary smoothly with $x$. The inverse $G^{-1}(x)$ has contravariant components $g^{i j}(x)$. Its determinant is indicated by $g(x)=\operatorname{det} G(x)$. By $\partial_{k}$ we mean $\partial / \partial x^{k}$.
(5) c. Show that $\nabla(\ln \operatorname{det} G)=\operatorname{tr}\left(G^{-1} \nabla G\right)$ by showing that $\partial_{k} \ln g=g^{i j} \partial_{k} g_{i j}$.
(5) d. Show that $\partial_{k} \ln g=2 \Gamma_{i k}^{i}$, in which $\Gamma_{j k}^{i}$ are the Christoffel symbols corresponding to the Lévi-Civita connection.
(Hint: Metric coefficients are "covariantly constant".)

Let $x^{i}(t) \in \mathbb{R}$ denote the $i$-th coordinate of a material point particle in $n$-dimensional Euclidean space, with $i=1, \ldots, n$, at time $t \in \mathbb{R}$, and $\dot{x}^{i}(t)=d x^{i}(t) / d t$. We introduce the so-called Lagrangian

$$
L: \mathbb{R}^{n} \times \mathbb{R}^{n} \rightarrow \mathbb{R}:(x, \dot{x}) \mapsto L(x, \dot{x})
$$

i.e. a real-valued function of the particle's position and velocity. We consider a spatial reparametrization of the form ${ }^{1} x^{i}: \mathbb{R}^{n} \rightarrow \mathbb{R}: \bar{x} \mapsto x^{i}(\bar{x})$, in terms of new independent variables $\bar{x} \in \mathbb{R}^{n}$. Via substitution, and using the chain rule, we then define the reparametrized Lagrangian $\bar{L}(\bar{x}, \dot{\bar{x}})=L(x, \dot{x})$.
(5) a. Show that the components of the particle's velocity "transforms as a vector" by showing that

$$
\dot{x}^{i}=\frac{\partial x^{i}}{\partial \bar{x}^{j}} \dot{\dot{x}^{j}}
$$

(Thus we may regard $x^{i}$ as a function of $\bar{x}^{j}$, and $\dot{x}^{i}$ as a function of $\bar{x}^{j}$ and $\dot{\bar{x}}^{k}, i, j, k=1, \ldots, n$.)
The components of the so-called canonical momentum relative to a coordinate basis are defined as

$$
p_{i}=\frac{\partial L(x, \dot{x})}{\partial \dot{x}^{i}}
$$

Likewise we require that

$$
\bar{p}_{i}=\frac{\partial \bar{L}(\bar{x}, \dot{\bar{x}})}{\partial \dot{\bar{x}}^{i}}
$$

(10) b. Show that the components of the canonical momentum "transforms as a covector" by showing that

$$
\bar{p}_{i}=\frac{\partial x^{j}}{\partial \bar{x}^{i}} p_{j}
$$

(5) c. Show that $p_{i} \dot{x}^{i}=\bar{p}_{i} \dot{\bar{x}}^{i}$.

[^0]Let $\omega^{k}(x)=\omega_{i_{1} \ldots i_{k}}(x) d x^{i_{1}} \wedge \ldots \wedge d x^{i_{k}} \in \bigwedge_{k}\left(\mathbb{R}^{n}\right)$ be an antisymmetric covariant tensor field of rank $k$ ( $k$-form for brevity), with $x \in \mathbb{R}^{n}$. The tangent space $\mathbb{T R}^{n}{ }_{y}$ at any point $y \in \mathbb{R}^{n}$ may be identified with $\mathbb{R}^{n}$. The exterior derivative of $\omega$ is the $(k+1)$-form given by

$$
d \omega^{k}(x)=d \omega_{i_{1} \ldots i_{k}}(x) \wedge d x^{i_{1}} \wedge \ldots \wedge d x^{i_{k}} \in \bigwedge_{k+1}\left(\mathbb{R}^{n}\right)
$$

with $d f(x) \stackrel{\text { def }}{=} \partial_{i} f(x) d x^{i}$ for a sufficiently smooth scalar field (or 0-form) $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$.
(5) a. Show that $d \omega^{n}(x)=0$ regardless the choice of $\omega^{n}(x) \in \bigwedge_{n}\left(\mathbb{R}^{n}\right)$.
(5) b. Show that $d^{2} \omega^{k}(x) \stackrel{\text { def }}{=} d d \omega^{k}(x)=0$ regardless the choice of $\omega^{k}(x) \in \bigwedge_{k}\left(\mathbb{R}^{n}\right)$ and $k=0, \ldots, n$.

We now consider $n=3$, and abbreviate $x^{1}=x, x^{2}=y, x^{3}=z, d x^{1}=d x, d x^{2}=d y, d x^{3}=d z$, etc.
(5) c. Give the general form of $\omega^{1}(x, y, z) \in \bigwedge_{1}\left(\mathbb{R}^{3}\right)$ and compute the explicit form of $d \omega^{1}(x, y, z)$.
(5) d. Give the general form of $\omega^{2}(x, y, z) \in \bigwedge_{2}\left(\mathbb{R}^{3}\right)$ and compute the explicit form of $d \omega^{2}(x, y, z)$.
(40) 4. Curvature Operator.

In this problem M is an $n$-dimensional smooth manifold. For the sake of simplicity we identify it with $\mathbb{R}^{n}$, i.e. we de-emphasize the role of coordinate charts. Linear superposition acts pointwise, i.e. vector arguments and scalar multipliers are to be regarded as (local samples of) smooth functions of $x \in \mathrm{M}$.

For $\mathbf{v}, \mathbf{w} \in \mathrm{TM}$ the (antisymmetric) curvature operator is defined as $\mathscr{R}(\mathbf{v}, \mathbf{w})=\left[\nabla_{\mathbf{v}}, \nabla_{\mathbf{w}}\right]-\nabla_{[\mathbf{v}, \mathbf{w}]}$.
For $\mathbf{u}, \mathbf{v}, \mathbf{w} \in \mathrm{TM}, \widetilde{\mathbf{z}} \in \mathrm{T}^{*} \mathbf{M}$, the Riemann curvature tensor is defined as $\mathbf{R}(\widetilde{\mathbf{z}}, \mathbf{u}, \mathbf{v}, \mathbf{w})=\langle\widetilde{\mathbf{z}}, \mathscr{R}(\mathbf{v}, \mathbf{w}) \mathbf{u}\rangle$.
(10) a. Let $\lambda: \mathrm{M} \rightarrow \mathbb{R}$ be a smooth scalar field. Show that $\mathscr{R}(\lambda \mathbf{v}, \mathbf{w})=\lambda \mathscr{R}(\mathbf{v}, \mathbf{w})$.
(10) b. Given the result of the previous problem, show that $\mathscr{R}(\mathbf{v}, \lambda \mathbf{w})=\lambda \mathscr{R}(\mathbf{v}, \mathbf{w})$.
(10) c. Show that $\mathscr{R}(\mathbf{v}, \mathbf{w})(\lambda \mathbf{u})=\lambda \mathscr{R}(\mathbf{v}, \mathbf{w}) \mathbf{u}$.
(Hint: Argue why it suffices to consider $\mathbf{v}=\partial_{i}, \mathbf{w}=\partial_{j}$.)
d. Show that $\mathbf{R}(\widetilde{\mathbf{z}}, \mathbf{u}, \mathbf{v}, \mathbf{w})$ is quadrilinear.


[^0]:    ${ }^{1}$ We adhere to common malpractice by using the same symbol $x$ to denote both an independent variable as well as a mapping. It should be clear from the context which of these two interpretations is applicable.

