RE-EXAMINATION TENSOR CALCULUS AND DIFFERENTIAL GEOMETRY

Course code: 2F800. Date: June 15, 2009. Time: 14h00-17h00. Place: HG 10.30 E.

- Write your name and student identification number on each paper.
- The exam consists of 5 problems. The maximum credit for each item is indicated in the margin.
- Motivate your answers.
- You may consult the course notes "Tensorrekening en Differentiaalmeetkunde (2F800)" by Jan de Graaf, and the draft notes "Tensor Calculus and Differential Geometry (2F800)" by Luc Florack without warranty.
- (25) 1. Antisymmetric Cotensors in \mathbb{R}^3

Let $\mathscr{B}(V) = \{\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3\}$ be a basis of Euclidean 3-space $V = \mathbb{R}^3$. Let $\mathscr{B}(\bigwedge^p(V))$ denote the induced basis for $\bigwedge^p(V)$, i.e. the linear space of antisymmetric contravariant tensors of rank p on V, and $\mathscr{B}(\bigvee^p(V))$ the induced basis for $\bigvee^p(V)$, i.e. the linear space of symmetric contravariant tensors of rank p on V.

 $(12\frac{1}{2})$ a. Complete the table for $\mathscr{B}(\bigwedge^p(V))$ in the appendix by providing the induced bases and their dimensions.

Cf. appendix, first table.

 $(12\frac{1}{2})$ **b.** Complete the table for $\mathscr{B}(\bigvee^p(V))$ in the appendix by providing the induced bases and their dimensions.

Cf. appendix, second table.

(20) 2. THE "INFINITESIMAL VOLUME ELEMENT".

We consider an open subset $\Omega \subset M$ of a Riemannian manifold M with a single smooth coordinate chart

$$\xi: \Omega \to \mathbb{R}^k: p \mapsto \xi(p) = (\xi^1(p), \dots, \xi^k(p)) \in \mathbb{R}^k.$$

Furthermore we take Ω to be correspond to the open box $\xi(\Omega)=(a^1,b^1)\times\ldots\times(a^k,b^k)\subset\mathbb{R}^k$.

Recall the classical change of variables theorem from integral calculus.

Theorem. If $\xi = \xi(\overline{\xi})$ represents a coordinate transformation, then, using self-explanatory notation for the boundary values,

$$\int_{a^1}^{b^1} \dots \int_{a^k}^{b^k} f(\xi^1, \dots, \xi^k) \, d\xi^1 \dots d\xi^k = \int_{\overline{a}^1}^{\overline{b}^1} \dots \int_{\overline{a}^k}^{\overline{b}^k} \overline{f}(\overline{\xi}^1, \dots, \overline{\xi}^k) \det \frac{\partial \xi}{\partial \overline{\xi}} \, d\overline{\xi}^1 \dots d\overline{\xi}^k,$$

in which

$$\overline{f}(\overline{\xi}^1,\ldots,\overline{\xi}^k) = f(\xi^1(\overline{\xi}^1,\ldots,\overline{\xi}^k),\ldots,\xi^k(\overline{\xi}^1,\ldots,\overline{\xi}^k)),$$

and

$$\det \frac{\partial \xi}{\partial \overline{\xi}} \stackrel{\text{def}}{=} \det \begin{pmatrix} \frac{\partial \xi^1}{\partial \overline{\xi}^1} & \cdots & \frac{\partial \xi^1}{\partial \overline{\xi}^n} \\ \dots & & \dots \\ \frac{\partial \xi^n}{\partial \overline{\xi}^1} & \cdots & \frac{\partial \xi^n}{\partial \overline{\xi}^n} \end{pmatrix}.$$

Also recall the following "tensor transformation law".

Lemma. Let $T \in \mathbf{T}_q^p(V)$ be a mixed tensor, $\{\mathbf{e}_i\}$ a basis of the n-dimensional real linear space V, $\mathbf{f}_j = A_j^i \mathbf{e}_i$ a change of basis, with transformation matrix A, and $B = A^{-1}$, i.e. $A_k^i B_j^k = \delta_j^i$. Then

$$T = T_{i_1 \dots i_p}^{i_1 \dots i_p} \mathbf{e}_{i_1} \otimes \dots \otimes \mathbf{e}_{i_p} \otimes \hat{\mathbf{e}}^{j_1} \otimes \dots \otimes \hat{\mathbf{e}}^{j_q} \stackrel{\text{def}}{=} \overline{T}_{j_1 \dots j_p}^{i_1 \dots i_p} \mathbf{f}_{i_1} \otimes \dots \otimes \mathbf{f}_{i_p} \otimes \hat{\mathbf{f}}^{j_1} \otimes \dots \otimes \hat{\mathbf{f}}^{j_q},$$

if and only if the holor adheres to the tensor transformation law,

$$\overline{T}_{j_1...j_q}^{i_1...i_p} = A_{j_1}^{\ell_1} \dots A_{j_q}^{\ell_q} B_{k_1}^{i_1} \dots B_{k_p}^{i_p} T_{\ell_1...\ell_q}^{k_1...k_p} \,.$$

A scalar is defined as a tensor of type (p, q) = (0, 0).

(5) **a.** Argue that the "infinitesimal volume element" $d\xi^1 \dots d\xi^k$ does not formally transform as a scalar, and derive the correct "relative scalar transformation law" to which it adheres.

From the theorem it is apparent that

$$d\overline{\xi}^1 \dots d\overline{\xi}^k = \det^{-1} \frac{\partial \xi}{\partial \overline{\xi}} d\xi^1 \dots d\xi^k.$$

The appearance of the Jacobian determinant violates the formal scalar transformation rule.

If $\mathbf{v}(p) = v^i(\xi(p))\partial_i|_p \in \mathrm{TM}_p$, $\mathbf{w}(p) = w^i(\xi(p))\partial_i|_p \in \mathrm{TM}_p$, in which TM_p is the tangent space to M at $p \in \Omega$, then we indicate the inner product on TM_p by $G(p)(\xi,\eta) = (\xi|\eta)_p = g_{ij}(\xi(p))v^i(\xi(p))w^j(\xi(p))$, in which $g_{ij}(\xi(p))$ is the (holor of the) metric tensor at $p \in \Omega$.

For notational simplicity we suppress the explicit base point label p and its reference coordinates $\xi(p)$ in the above notation, and simply write $\mathbf{v}=v^i\partial_i$, $\mathbf{w}=w^i\partial_i$, $G(\xi,\eta)=(\xi|\eta)=g_{ij}v^iw^j$, et cetera. The determinant of the matrix g_{ij} is abbreviated as g.

(5) **b.** Show that the "invariant infinitesimal volume element", $dV \stackrel{\text{def}}{=} \sqrt{g} d\xi^1 \dots d\xi^k$, transforms as a "pseudo scalar", i.e. in a way identical to a scalar up to a possible minus sign: When does the minus sign arise?

Using

$$\overline{g} = \left(\det \frac{\partial \xi}{\partial \overline{\xi}} \right)^2 g \quad \text{whence} \quad \sqrt{\overline{g}} = \left| \det \frac{\partial \xi}{\partial \overline{\xi}} \right| \sqrt{g} \,,$$

and the change of variables theorem, we observe that

$$d\overline{V} \stackrel{\mathrm{def}}{=} \sqrt{\overline{g}} \, d\overline{\xi}^1 \dots d\overline{\xi}^k = |\det \frac{\partial \xi}{\partial \overline{\xi}}| \sqrt{g} \, \det \frac{\partial \overline{\xi}}{\partial \xi} \, d\xi^1 \dots d\xi^k = \mathrm{sgn} \left(\det \frac{\partial \xi}{\partial \overline{\xi}} \right) \sqrt{g} \, d\xi^1 \dots d\xi^k = \mathrm{sgn} \left(\det \frac{\partial \xi}{\partial \overline{\xi}} \right) \, dV \, .$$

A minus sign shows up if the orientation of the coordinate system changes.

(5) **c.** Show that the Levi-Civita tensor, $\epsilon = \sqrt{g} d\xi^1 \wedge \ldots \wedge d\xi^k = \epsilon_{|\mu_1 \ldots \mu_k|} d\xi^{\mu_1} \wedge \ldots \wedge d\xi^{\mu_k} \in \bigwedge_k (TM_p)$,

with $\epsilon_{1...k} = \sqrt{g}$, formally transforms in the same way as dV.

We have

$$\begin{split} \overline{\pmb{\epsilon}} &= -\sqrt{\overline{g}}\,d\overline{\xi}^1 \wedge \ldots \wedge d\overline{\xi}^k \stackrel{\text{b}}{=} \left| \det \frac{\partial \xi}{\partial \overline{\xi}} \right| \, \sqrt{g} \, \left(\frac{\partial \overline{\xi}^1}{\partial \xi^{i_1}} d\xi^{i_1} \right) \wedge \ldots \wedge \left(\frac{\partial \overline{\xi}^k}{\partial \xi^{i_k}} d\xi^{i_k} \right) = \left| \det \frac{\partial \xi}{\partial \overline{\xi}} \right| \, \sqrt{g} \, \frac{\partial \overline{\xi}^1}{\partial \xi^{i_1}} \ldots \frac{\partial \overline{\xi}^k}{\partial \xi^{i_k}} \, d\xi^{i_1} \wedge \ldots \wedge d\xi^{i_k} \\ &= -\left| \det \frac{\partial \xi}{\partial \overline{\xi}} \right| \, \sqrt{g} \, \frac{\partial \overline{\xi}^1}{\partial \xi^{i_1}} \ldots \frac{\partial \overline{\xi}^k}{\partial \xi^{i_k}} \, \left[i_1 \ldots i_k \right] \, d\xi^1 \wedge \ldots \wedge d\xi^k \stackrel{*}{=} \text{sgn} \, \det \frac{\partial \xi}{\partial \overline{\xi}} \, \sqrt{g} \, d\xi^1 \wedge \ldots \wedge d\xi^k = \text{sgn} \, \det \frac{\partial \xi}{\partial \overline{\xi}} \, \pmb{\epsilon} \, . \end{split}$$

In * we have made use of $\frac{\partial \overline{\xi}^1}{\partial \xi^{i_1}} \dots \frac{\partial \overline{\xi}^k}{\partial \xi^{i_k}} \ [i_1 \dots i_k] = \det \frac{\partial \overline{\xi}}{\partial \xi} \text{ and of } \det \frac{\partial \overline{\xi}}{\partial \xi} = \det^{-1} \frac{\partial \xi}{\partial \overline{\xi}}.$

The Levi-Civita (or metric) connection provides a covariant derivative operator ∇ , with formal components D_j relative to a coordinate basis $\{dx^j\}$. Recall that for the contravariant components of a vector field we have $D_j v^k = \partial_j v^k + \Gamma^k_{ij} v^i$, with

$$\Gamma_{ij}^{k} = \frac{1}{2} g^{k\ell} \left(\partial_{i} g_{\ell j} + \partial_{j} g_{\ell i} - \partial_{\ell} g_{ij} \right) .$$

(5) **d.** Show that if $\hat{\mathbf{v}} = v_i dx^i \in T^*M$ and $\mathbf{w} = w^i \partial_i \in TM$ are smooth covector, respectively vector fields "of rapid decay", i.e. such that all derivatives of the component functions $v_i : \mathbb{R}^k \to \mathbb{R} : q \mapsto v_i(q)$ and $w^i : \mathbb{R}^k \to \mathbb{R} : q \mapsto w^i(q)$ vanish in the limit $||q|| \to \infty$, then

$$\int_{\mathbb{R}^k} v_i(\xi) (D_j w^i(\xi)) \sqrt{g}(\xi) d\xi^1 \dots d\xi^k = -\int_{\mathbb{R}^k} (D_j v_i(\xi)) w^i(\xi) \sqrt{g}(\xi) d\xi^1 \dots d\xi^k.$$

By construction of the Levi-Civita connection the metric is "covariantly constant", i.e. $D_k g_{ij} = 0$, whence also $D_k \sqrt{g} = 0$. Therefore

$$D_j (v_i w^i \sqrt{g}) = (D_j v_i w^i + v_i D_j w^i) \sqrt{g},$$

from which the result follows by integration, taking into account that integration of the left hand side yields zero by virtue of rapid decay.

4

(25) 3. CARTESIAN TENSORS

Let M be a smooth manifold furnished with an atlas of coordinate charts, and consider a coordinate transformation $y^i = y^i(x^1, \dots, x^n)$, $i = 1, \dots, n$. (For simplicity we write $y^i = y^i(x^j)$ henceforth.) The Jacobian matrix is indicated by **A**, with components $A^i_j = \partial y^i/\partial x^j$, and its inverse by **B**, with $B^i_j = \partial x^i/\partial y^j$. (The upper index acts as the row index.)

For $\mathbf{p} \in \mathbf{M}$, $\{\partial_{x^i}\}$ denotes the coordinate basis of the local tangent space $\mathrm{TM}_{\mathbf{p}}$ in x-coordinatization. An arbitrary vector can be decomposed as $\mathbf{v} = v^i \partial_{x^i}$ relative to $\{\partial_{x^i}\}$. The cotangent space $\mathrm{T}^*\mathrm{M}_{\mathbf{p}}$ is spanned by $\{dx^i\}$, and an arbitrary covector can be written as $\hat{\mathbf{v}} = v_i dx^i$ relative to $\{dx^i\}$.

(5) **a.** Show that if $\mathbf{v} = w^i \partial_{y^i}$ and $\hat{\mathbf{v}} = w_i dy^i$, then $w^i = A^i_j v^j$, respectively $w_i = B^j_i v_j$.

We have $\mathbf{v} = v^j \partial_{x^j} = v^j A^i_j \partial_{y^i} = w^i \partial_{y^i}$, from which we infer that $w^i = A^i_j v^j$. Likewise, $\hat{\mathbf{v}} = v_j dx^j = v_j B^j_i dy^i = w_i dy^i$, whence $w_i = B^j_i v_j$.

We impose a Riemannian structure on M by stipulating an inner product (on each tangent space). If $\mathbf{v}, \mathbf{w} \in \mathrm{TM}_{\mathbf{p}}$, then $(\mathbf{v}|\mathbf{w}) = G(\mathbf{v}, \mathbf{w}) = g_{ij}v^iw^j$, in which $g_{ij} = (\partial_{x^i}|\partial_{x^j})$ are the components of the corresponding Gram matrix G relative to $\{\partial_{x^i}\}$. (Notice the distinction between the coordinate independent rank-2 cotensor G and its coordinate dependent matrix representation G.)

(5) **b.** Show that if $G = g_{ij}dx^i \otimes dx^j = h_{ij}dy^i \otimes dy^j$, in which h_{ij} are the components of the Gram matrix **H** in y-coordinatization, then $\mathbf{H} = \mathbf{B}^T \mathbf{G} \mathbf{B}$.

We have $G = g_{ij} dx^i \otimes dx^j = g_{ij} B_k^i B_\ell^j dy^k \otimes dy^\ell$, whence it follows that $h_{k\ell} = B_k^i B_\ell^j g_{ij}$. In matrix notation, identifying upper (lower) or leftmost (rightmost) indices as row (column) indices, this can be expressed as $\mathbf{H} = \mathbf{B}^T \mathbf{G} \mathbf{B}$.

Definition. The converters \sharp : $TM_{\mathbf{p}} \to T^*M_{\mathbf{p}}$ and \flat : $T^*M_{\mathbf{p}} \to TM_{\mathbf{p}}$ are defined as follows. If $\mathbf{v} \in TM_{\mathbf{p}}$, $\hat{\mathbf{v}} \in T^*M_{\mathbf{p}}$, then

$$\sharp \mathbf{v} \stackrel{\mathrm{def}}{=} G(\mathbf{v}, \,\cdot\,) \in \mathrm{T}^*\mathrm{M}_{\mathbf{p}} \quad \text{respectively} \quad \flat \hat{\mathbf{v}} \stackrel{\mathrm{def}}{=} G^{-1}(\hat{\mathbf{v}}, \,\cdot\,) \in \mathrm{TM}_{\mathbf{p}} \,.$$

The dual metric G^{-1} is the rank-2 contratensor uniquely defined in terms of G by the requirement that the converters be eachother's inverse:

$$\sharp \circ \flat = id_{T^*M_D}$$
 respectively $\flat \circ \sharp = id_{TM_D}$.

(5) **c.** Show that $G^{-1} = g^{ij}\partial_{x^i} \otimes \partial_{x^j}$, in which g^{ij} are the components of the inverse Gram matrix \mathbf{G}^{-1} . (*Hint:* Work out $(\flat \circ \sharp)\mathbf{v} = \mathbf{v}$ for all $\mathbf{v} \in \mathsf{TM}_{\mathbf{p}}$ in coordinate form.)

Suppose $bdx^j = \gamma^{jk}\partial_{x^k}$ for some γ^{jk} , which is possible by definition of the prototype of the operator b. We then have $b \circ \sharp \mathbf{v} = bG(\mathbf{v}, \cdot) = bg_{ij}v^idx^j = g_{ij}v^ibdx^j = g_{ij}v^i\gamma^{jk}\partial_{x^k} \stackrel{\text{def}}{=} v^k\partial_{x^k} = \mathbf{v}$. Since this must hold for all $\mathbf{v} \in TM_{\mathbf{p}}$ it follows that $g_{ij}\gamma^{jk} = \delta^k_i$, in other words, $\gamma^{ij} = g^{ij}$.

We now assume that M is a Euclidean space, and that, in x-coordinatization, G = I, the identity matrix (i.e. x^i are Cartesian coordinates, and $\{\partial_{x^i}\}$ is an orthonormal basis of TM_D).

Definition. A coordinate transformation relating Cartesian coordinate systems is called a Cartesian coordinate transformation.

(5) **d.** Give the explicit form of an arbitrary Cartesian coordinate transformation $y^i = y^i(x^j)$.

The defining equation for Cartesian coordinate systems x and y is $\mathbf{G} = \mathbf{H} = \mathbf{I}$. According to b we thus have in y-coordinatization $\mathbf{I} = \mathbf{B}^T \mathbf{B}$. Consequently \mathbf{B} , and hence also its inverse \mathbf{A} , must be an orthogonal matrix. This implies that $y^i = a^i + A^i_j x^j$ (with $\mathbf{A}^T \mathbf{A} = \mathbf{I}$).

(5) **e.** Argue why in this case no distinction needs to be made between a vector $\mathbf{v} \in TM_{\mathbf{p}}$ and its dual $\hat{\mathbf{v}} = \sharp \mathbf{v} \in T^*M_{\mathbf{p}}$, or between upper and lower indices.

If we rewrite the transformation laws for vector and covector components, recall a, in matrix-vector form, we get

$$\left(\begin{array}{c} w^1 \\ \vdots \\ w^n \end{array} \right) = A \left(\begin{array}{c} v^1 \\ \vdots \\ v^n \end{array} \right) \quad \text{respectively} \quad \left(\begin{array}{c} w_1 \\ \vdots \\ w_n \end{array} \right) = B^{\mathsf{T}} \left(\begin{array}{c} v_1 \\ \vdots \\ v_n \end{array} \right) = B^{-1} \left(\begin{array}{c} v_1 \\ \vdots \\ v_n \end{array} \right) = A \left(\begin{array}{c} v_1 \\ \vdots \\ v_n \end{array} \right).$$

Thus the contravariant components v^i of $\mathbf{v} \in TM$ and the covariant components v_i of $\hat{\mathbf{v}} \in T^*M$ transform in the same way. In addition, since $v^i = g^{ij}v_j$, contravariant and covariant components coincide numerically by virtue of the fact that $\mathbf{G} = \mathbf{I}$ in any Cartesian coordinate system. As a result, no confusion is likely to arise if we label all components by lower indices only.

(15) 4. GEODESIC COORDINATES

Definition. The Christoffel symbols Γ^k_{ij} associated with the affine connection $\nabla: \mathbb{T}\mathbb{R}^n \times \mathbb{T}\mathbb{R}^n \to \mathbb{T}\mathbb{R}^n$ are defined by $\nabla_{\partial_i}\partial_i = \Gamma^k_{ij}\partial_k\ (i,j,k=1,\ldots,n)$.

Recall that the components of the Christoffel symbols in a coordinate system $\overline{\mathbf{x}}$, say $\overline{\Gamma}_{ij}^k$, are given relative to those in a coordinate system \mathbf{x} , i.e. Γ_{ij}^k , by

$$\overline{\Gamma}_{ij}^k = S_\ell^k \left(T_j^m T_i^n \Gamma_{nm}^\ell + \overline{\partial}_j T_i^\ell \right) \,,$$

in which T and S are the Jacobian matrices with components

$$T^i_j = rac{\partial x^i}{\partial \overline{x}^j} \quad {
m resp.} \quad S^i_j = rac{\partial \overline{x}^i}{\partial x^j} \, .$$

• Let $\Gamma^k_{ij}(\mathscr{P})$ be given at a *fixed* point \mathscr{P} , with coordinates $x^i(\mathscr{P})=a^i$, say. Show that there exists a coordinate system $\overline{\mathbf{x}}$ such that $\overline{x}^i(\mathscr{P})=0$ and $\overline{\Gamma}^k_{ij}(\mathscr{P})=0$. (*Hint:* Postulate a transformation of the type $x^i=\alpha^i+\overline{x}^i+\frac{1}{2}\alpha^i_{jk}\overline{x}^j\overline{x}^k$.)

Obviously we must set $\alpha^i = a^i$. We have furthermore

$$T^i_j = \frac{\partial x^i}{\partial \overline{x}^j} = \delta^i_j + \alpha^i_{jk} \overline{x}^k \quad \text{and} \quad \overline{\partial}_j T^k_i = \alpha^k_{ij} \,,$$

so in particular

$$T_j^i(\mathscr{P}) = \delta_j^i \quad \text{and} \quad \overline{\partial}_j T_i^k(\mathscr{P}) = \alpha_{ij}^k \,.$$

Substitution into the equation $\overline{\Gamma}_{ij}^k(\mathscr{P})=0,$ i.e.

$$T_j^m(\mathscr{P})T_i^n(\mathscr{P})\Gamma_{nm}^k(\mathscr{P}) + \overline{\partial}_j T_i^k(\mathscr{P}) = 0,$$

yields $\Gamma^k_{ij}(\mathscr{P})+\alpha^k_{ij}=0,$ whence $\alpha^k_{ij}=-\Gamma^k_{ij}(\mathscr{P}).$

(15) 5. Cross Product in \mathbb{R}^3

Given a basis $\{\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3\}$ of $V = \mathbb{R}^3$ and a corresponding decomposition $\mathbf{v} = v^i \partial_i$, $\mathbf{w} = w^i \partial_i$, an inner product on V is specified by $(\mathbf{v}|\mathbf{w}) = G(\mathbf{v}, \mathbf{w}) = g_{ij}v^iw^j$, in which $g_{ij} = (\mathbf{e}_i|\mathbf{e}_j)$ are the components of the corresponding Gram matrix \mathbf{G} . The dual basis of V^* is indicated by $\{\hat{\mathbf{e}}^1, \hat{\mathbf{e}}^2, \hat{\mathbf{e}}^3\}$.

Definition. Let $\hat{\mathbf{a}}^1, \dots, \hat{\mathbf{a}}^k \in V^*$. The Hodge star operator $*: \bigwedge_k(V) \to \bigwedge_{n-k}(V)$ is defined as follows:

$$\left\{ \begin{array}{ll} *1 & = & \pmb{\epsilon} & \text{for } k = 0, \\ * \left(\hat{\mathbf{a}}^1 \wedge \ldots \wedge \hat{\mathbf{a}}^k \right) & = & \pmb{\epsilon} \lrcorner \flat \hat{\mathbf{a}}^1 \lrcorner \ldots \lrcorner \flat \hat{\mathbf{a}}^k & \text{for } k = 1, \ldots, n. \end{array} \right.$$

In this definition $\epsilon = \sqrt{g} \, \hat{\mathbf{e}}^1 \wedge \hat{\mathbf{e}}^2 \wedge \hat{\mathbf{e}}^3 = \epsilon_{|i_1 i_2 i_3|} \hat{\mathbf{e}}^{i_1} \wedge \hat{\mathbf{e}}^{i_2} \wedge \hat{\mathbf{e}}^{i_3} \in \bigwedge_3(V)$ is the Levi-Civita tensor, with $\epsilon_{123} = \sqrt{g} = \sqrt{\det \mathbf{G}}$.

Definition. Let $\mathbf{a}_1, \dots, \mathbf{a}_k \in V$. The (n-k)-form $\epsilon \lrcorner \mathbf{a}_1 \lrcorner \dots \lrcorner \mathbf{a}_k \in \bigwedge_{n-k}(V)$ is defined as follows:

$$(\epsilon \exists \mathbf{a}_1 \exists \ldots \exists \mathbf{a}_k) (\mathbf{x}_{k+1}, \ldots, \mathbf{x}_n) = \epsilon (\mathbf{a}_1, \ldots, \mathbf{a}_k, \mathbf{x}_{k+1}, \ldots, \mathbf{x}_n)$$
 for all $\mathbf{x}_{k+1}, \ldots, \mathbf{x}_n \in V$.

Definition The cross product $\times: V \times V \to V: (\mathbf{v}, \mathbf{w}) \mapsto \mathbf{v} \times \mathbf{w}$ is defined in terms of the Levi-Civita tensor and Hodge star operator as follows:

$$\mathbf{v} \times \mathbf{w} = \flat \left(* \left(\sharp \mathbf{v} \wedge \sharp \mathbf{w} \right) \right) .$$

Recall problem 3 for the definition of \sharp and \flat .

• Show that the components of $\mathbf{u} = \mathbf{v} \times \mathbf{w}$ are given by $u^{\ell} = \epsilon_{ijk} v^i w^j g^{k\ell}$. Give the explicit formula for (u^1, u^2, u^3) in case of an orthonormal basis.

We have

$$\mathbf{v}\times\mathbf{w}=\flat\left(\ast\left(\sharp\mathbf{v}\wedge\sharp\mathbf{w}\right)\right)=\flat\left(\epsilon\lrcorner\left(\flat\circ\sharp\right)\mathbf{v}\lrcorner\left(\flat\circ\sharp\right)\mathbf{w}\right)=\flat\left(\epsilon\lrcorner\mathbf{v}\lrcorner\mathbf{w}\right)=\flat\left(\epsilon_{ijk}v^{i}w^{j}\mathbf{\hat{e}}^{k}\right)=\epsilon_{ijk}v^{i}w^{j}g^{k\ell}\mathbf{e}_{\ell}\,,$$

from which the result follows. If $\{\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3\}$ is orthonormal, then $\mathbf{G} = \mathbf{I}$ and $\epsilon_{ijk} = [ijk]$, whence $\mathbf{u} = \mathbf{v} \times \mathbf{w} = [ijk]v^iw^j\mathbf{e}_k$, or

$$\left(\begin{array}{c} u^1 \\ u^2 \\ u^3 \end{array} \right) = \left(\begin{array}{c} v^1 \\ v^2 \\ v^3 \end{array} \right) \times \left(\begin{array}{c} w^1 \\ w^2 \\ w^3 \end{array} \right) = \left(\begin{array}{c} v^2 w^3 - v^3 w^2 \\ v^3 w^1 - v^1 w^3 \\ v^1 w^2 - v^2 w^1 \end{array} \right) \, .$$

THE END

APPENDIX

Name: Student number:

$\mathcal{D}(\mathbf{A}\mathcal{D}(\mathbf{T}))$	1:
p $\mathscr{B}(\bigwedge^p(V))$	dim
0	1
$ig egin{array}{c} 1 \ ig egin{array}{c} \{\mathbf{e}_1,\mathbf{e}_2,\mathbf{e}_3\} \end{array}$	3
$\{\mathbf{e}_1 \wedge \mathbf{e}_2, \mathbf{e}_1 \wedge \mathbf{e}_3, \mathbf{e}_2 \wedge \mathbf{e}_3\}$	3
$\{\mathbf{e}_1 \wedge \mathbf{e}_2 \wedge \mathbf{e}_3\}$	1

		T
$\begin{vmatrix} \\ p \end{vmatrix}$	$\mathscr{B}(igvee^p(V))$	dim
1	** (V - (*))	
0	$\{1\}$	1
	, , ,	
1	$\{\mathbf e_1,\mathbf e_2,\mathbf e_3\}$	3
2	$\{\mathbf{e}_1 \vee \mathbf{e}_1, \mathbf{e}_1 \vee \mathbf{e}_2, \mathbf{e}_1 \vee \mathbf{e}_3, \mathbf{e}_2 \vee \mathbf{e}_2, \mathbf{e}_2 \vee \mathbf{e}_3, \mathbf{e}_3 \vee \mathbf{e}_3\}$	6
3	$\{\mathbf{e}_1 \vee \mathbf{e}_1 \vee \mathbf{e}_1, \mathbf{e}_1 \vee \mathbf{e}_1 \vee \mathbf{e}_2, \mathbf{e}_1 \vee \mathbf{e}_1 \vee \mathbf{e}_3, \mathbf{e}_1 \vee \mathbf{e}_2 \vee \mathbf{e}_2, \mathbf{e}_1 \vee \mathbf{e}_2 \vee \mathbf{e}_3, \mathbf{e}_1 \vee \mathbf{e}_3 \vee \mathbf{e}_3, \mathbf{e}_2 \vee \mathbf{e}_2 \vee \mathbf{e}_2, \mathbf{e}_2 \vee \mathbf{e}_2 \vee \mathbf{e}_3, \mathbf{e}_2 \vee \mathbf{e}_3 \vee \mathbf{e}_3 \vee \mathbf{e}_3 \vee \mathbf{e}_3 \vee \mathbf{e}_3 \rangle$	10
1 3	$\begin{bmatrix} 1 \\ 1 \end{bmatrix}$	10