RE-EXAMINATION TENSOR CALCULUS AND DIFFERENTIAL GEOMETRY

Course code: 2F800. Date: June 15, 2009. Time: 14h00-17h00. Place: HG 10.30 E.

- Write your name and student identification number on each paper.
- The exam consists of 5 problems. The maximum credit for each item is indicated in the margin.
- Motivate your answers.
- You may consult the course notes "Tensorrekening en Differentiaalmeetkunde (2F800)" by Jan de Graaf, and the draft notes "Tensor Calculus and Differential Geometry (2F800)" by Luc Florack without warranty.

(25) **1.** ANTISYMMETRIC COTENSORS IN \mathbb{R}^3

Let $\mathscr{B}(V) = {\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3}$ be a basis of Euclidean 3-space $V = \mathbb{R}^3$. Let $\mathscr{B}(\bigwedge^p(V))$ denote the induced basis for $\bigwedge^p(V)$, i.e. the linear space of antisymmetric contravariant tensors of rank p on V, and $\mathscr{B}(\bigvee^p(V))$ the induced basis for $\bigvee^p(V)$, i.e. the linear space of symmetric contravariant tensors of rank p on V.

- $(12\frac{1}{2})$ a. Complete the table for $\mathscr{B}(\bigwedge^p(V))$ in the appendix by providing the induced bases and their dimensions.
- $(12\frac{1}{2})$ **b.** Complete the table for $\mathscr{B}(\bigvee^p(V))$ in the appendix by providing the induced bases and their dimensions.

÷

(20) 2. THE "INFINITESIMAL VOLUME ELEMENT".

We consider an open subset $\Omega \subset M$ of a Riemannian manifold M with a single smooth coordinate chart

$$\xi: \Omega \to \mathbb{R}^k: p \mapsto \xi(p) = (\xi^1(p), \dots, \xi^k(p)) \in \mathbb{R}^k.$$

Furthermore we take Ω to be correspond to the open box $\xi(\Omega) = (a^1, b^1) \times \ldots \times (a^k, b^k) \subset \mathbb{R}^k$.

Recall the classical change of variables theorem from integral calculus.

Theorem. If $\xi = \xi(\overline{\xi})$ represents a coordinate transformation, then, using self-explanatory notation for the boundary values,

$$\int_{a^1}^{b^1} \dots \int_{a^k}^{b^k} f(\xi^1, \dots, \xi^k) \, d\xi^1 \dots d\xi^k = \int_{\overline{a}^1}^{\overline{b}^1} \dots \int_{\overline{a}^k}^{\overline{b}^k} \overline{f}(\overline{\xi}^1, \dots, \overline{\xi}^k) \det \frac{\partial \xi}{\partial \overline{\xi}} \, d\overline{\xi}^1 \dots d\overline{\xi}^k \,,$$

in which

$$\overline{f}(\overline{\xi}^1,\ldots,\overline{\xi}^k) = f(\xi^1(\overline{\xi}^1,\ldots,\overline{\xi}^k),\ldots,\xi^k(\overline{\xi}^1,\ldots,\overline{\xi}^k)),$$

and

$$\det \frac{\partial \xi}{\partial \overline{\xi}} \stackrel{\text{def}}{=} \det \begin{pmatrix} \frac{\partial \xi^1}{\partial \overline{\xi}^1} & \cdots & \frac{\partial \xi^1}{\partial \overline{\xi}^n} \\ \cdots & \cdots \\ \frac{\partial \xi^n}{\partial \overline{\xi}^1} & \cdots & \frac{\partial \xi^n}{\partial \overline{\xi}^n} \end{pmatrix}.$$

Also recall the following "tensor transformation law".

Lemma. Let $T \in \mathbf{T}_q^p(V)$ be a mixed tensor, $\{\mathbf{e}_i\}$ a basis of the *n*-dimensional real linear space V, $\mathbf{f}_j = A_j^i \mathbf{e}_i$ a change of basis, with transformation matrix A, and $B = A^{-1}$, i.e. $A_k^i B_i^k = \delta_i^i$. Then

$$T = T_{j_1\dots j_q}^{i_1\dots i_p} \mathbf{e}_{i_1} \otimes \dots \otimes \mathbf{e}_{i_p} \otimes \hat{\mathbf{e}}^{j_1} \otimes \dots \otimes \hat{\mathbf{e}}^{j_q} \stackrel{\text{def}}{=} \overline{T}_{j_1\dots j_q}^{i_1\dots i_p} \mathbf{f}_{i_1} \otimes \dots \otimes \mathbf{f}_{i_p} \otimes \hat{\mathbf{f}}^{j_1} \otimes \dots \otimes \hat{\mathbf{f}}^{j_q},$$

if and only if the holor adheres to the tensor transformation law,

$$\overline{T}_{j_1\dots j_q}^{i_1\dots i_p} = A_{j_1}^{\ell_1}\dots A_{j_q}^{\ell_q} B_{k_1}^{i_1}\dots B_{k_p}^{i_p} T_{\ell_1\dots \ell_q}^{k_1\dots k_p} \,.$$

A scalar is defined as a tensor of type (p, q) = (0, 0).

(5) **a.** Argue that the "infinitesimal volume element" $d\xi^1 \dots d\xi^k$ does not formally transform as a scalar, and derive the correct "relative scalar transformation law" to which it adheres.

If $\mathbf{v}(p) = v^i(\xi(p))\partial_i|_p \in \mathrm{TM}_p$, $\mathbf{w}(p) = w^i(\xi(p))\partial_i|_p \in \mathrm{TM}_p$, in which TM_p is the tangent space to M at $p \in \Omega$, then we indicate the inner product on TM_p by $G(p)(\xi, \eta) = (\xi|\eta)_p = g_{ij}(\xi(p))v^i(\xi(p))w^j(\xi(p))$, in which $g_{ij}(\xi(p))$ is the (holor of the) metric tensor at $p \in \Omega$.

For notational simplicity we suppress the explicit base point label p and its reference coordinates $\xi(p)$ in the above notation, and simply write $\mathbf{v} = v^i \partial_i$, $\mathbf{w} = w^i \partial_i$, $G(\xi, \eta) = (\xi|\eta) = g_{ij}v^i w^j$, et cetera. The determinant of the matrix g_{ij} is abbreviated as g.

- (5) **b.** Show that the "invariant infinitesimal volume element", $dV \stackrel{\text{def}}{=} \sqrt{g} d\xi^1 \dots d\xi^k$, transforms as a "pseudo scalar", i.e. in a way identical to a scalar up to a possible minus sign: When does the minus sign arise?
- (5) **c.** Show that the Levi-Civita tensor, $\epsilon = \sqrt{g} d\xi^1 \wedge \ldots \wedge d\xi^k = \epsilon_{|\mu_1...\mu_k|} d\xi^{\mu_1} \wedge \ldots \wedge d\xi^{\mu_k} \in \bigwedge_k (\mathrm{TM}_p)$, with $\epsilon_{1...k} = \sqrt{g}$, formally transforms in the same way as dV.

The Levi-Civita (or metric) connection provides a covariant derivative operator ∇ , with formal components D_j relative to a coordinate basis $\{dx^j\}$. Recall that for the contravariant components of a vector field we have $D_j v^k = \partial_j v^k + \Gamma_{ij}^k v^i$, with

$$\Gamma_{ij}^k = rac{1}{2} g^{k\ell} \left(\partial_i g_{\ell j} + \partial_j g_{\ell i} - \partial_\ell g_{i j} \right) \,.$$

(5) **d.** Show that if $\hat{\mathbf{v}} = v_i dx^i \in T^*M$ and $\mathbf{w} = w^i \partial_i \in TM$ are smooth covector, respectively vector fields "of rapid decay", i.e. such that all derivatives of the component functions $v_i : \mathbb{R}^k \to \mathbb{R} : q \mapsto v_i(q)$ and $w^i : \mathbb{R}^k \to \mathbb{R} : q \mapsto w^i(q)$ vanish in the limit $||q|| \to \infty$, then

$$\int_{\mathbb{R}^k} v_i(\xi) \left(D_j w^i(\xi) \right) \sqrt{g}(\xi) \, d\xi^1 \dots d\xi^k = - \int_{\mathbb{R}^k} (D_j v_i(\xi)) \, w^i(\xi) \, \sqrt{g}(\xi) \, d\xi^1 \dots d\xi^k \, .$$

(25) 3. CARTESIAN TENSORS

Let M be a smooth manifold furnished with an atlas of coordinate charts, and consider a coordinate transformation $y^i = y^i(x^1, \ldots, x^n)$, $i = 1, \ldots, n$. (For simplicity we write $y^i = y^i(x^j)$ henceforth.) The Jacobian matrix is indicated by **A**, with components $A_j^i = \partial y^i / \partial x^j$, and its inverse by **B**, with $B_j^i = \partial x^i / \partial y^j$. (The upper index acts as the row index.)

For $\mathbf{p} \in \mathbf{M}$, $\{\partial_{x^i}\}$ denotes the coordinate basis of the local tangent space $\mathrm{TM}_{\mathbf{p}}$ in *x*-coordinatization. An arbitrary vector can be decomposed as $\mathbf{v} = v^i \partial_{x^i}$ relative to $\{\partial_{x^i}\}$. The cotangent space $\mathrm{T}^*\mathrm{M}_{\mathbf{p}}$ is spanned by $\{dx^i\}$, and an arbitrary covector can be written as $\hat{\mathbf{v}} = v_i dx^i$ relative to $\{dx^i\}$.

(5) **a.** Show that if
$$\mathbf{v} = w^i \partial_{y^i}$$
 and $\hat{\mathbf{v}} = w_i dy^i$, then $w^i = A^i_j v^j$, respectively $w_i = B^j_i v_j$.

We impose a Riemannian structure on M by stipulating an inner product (on each tangent space). If $\mathbf{v}, \mathbf{w} \in \mathrm{TM}_{\mathbf{p}}$, then $(\mathbf{v}|\mathbf{w}) = G(\mathbf{v}, \mathbf{w}) = g_{ij}v^iw^j$, in which $g_{ij} = (\partial_{x^i}|\partial_{x^j})$ are the components of the corresponding Gram matrix G relative to $\{\partial_{x^i}\}$. (Notice the distinction between the coordinate independent rank-2 cotensor G and its coordinate dependent matrix representation G.)

(5) **b.** Show that if $G = g_{ij}dx^i \otimes dx^j = h_{ij}dy^i \otimes dy^j$, in which h_{ij} are the components of the Gram matrix **H** in *y*-coordinatization, then $\mathbf{H} = \mathbf{B}^T \mathbf{G} \mathbf{B}$.

Definition. The converters \sharp : $TM_p \rightarrow T^*M_p$ and \flat : $T^*M_p \rightarrow TM_p$ are defined as follows. If $\mathbf{v} \in TM_p$, $\hat{\mathbf{v}} \in T^*M_p$, then

$$\sharp \mathbf{v} \stackrel{\text{def}}{=} G(\mathbf{v},\,\cdot\,) \in \mathrm{T}^*\mathrm{M}_{\mathbf{p}} \quad \text{respectively} \quad \flat \hat{\mathbf{v}} \stackrel{\text{def}}{=} G^{-1}(\hat{\mathbf{v}},\,\cdot\,) \in \mathrm{T}\mathrm{M}_{\mathbf{p}} \,.$$

The dual metric G^{-1} is the rank-2 contratensor uniquely defined in terms of G by the requirement that the converters be eachother's inverse:

$$\sharp \circ \flat = \mathrm{id}_{\mathrm{T}^*\mathrm{M}_{\mathbf{D}}}$$
 respectively $\flat \circ \sharp = \mathrm{id}_{\mathrm{T}\mathrm{M}_{\mathbf{D}}}$.

(5) **c.** Show that $G^{-1} = g^{ij}\partial_{x^i} \otimes \partial_{x^j}$, in which g^{ij} are the components of the inverse Gram matrix \mathbf{G}^{-1} . (*Hint:* Work out $(\flat \circ \sharp)\mathbf{v} = \mathbf{v}$ for all $\mathbf{v} \in \mathrm{TM}_{\mathbf{p}}$ in coordinate form.)

We now assume that M is a Euclidean space, and that, in x-coordinatization, $\mathbf{G} = \mathbf{I}$, the identity matrix (i.e. x^i are Cartesian coordinates, and $\{\partial_{x^i}\}$ is an orthonormal basis of $\mathrm{TM}_{\mathbf{p}}$).

Definition. A coordinate transformation relating Cartesian coordinate systems is called a Cartesian coordinate transformation.

- (5) **d.** Give the explicit form of an arbitrary Cartesian coordinate transformation $y^i = y^i(x^j)$.
- (5) **e.** Argue why in this case no distinction needs to be made between a vector $\mathbf{v} \in TM_{\mathbf{p}}$ and its dual $\hat{\mathbf{v}} = \sharp \mathbf{v} \in T^*M_{\mathbf{p}}$, or between upper and lower indices.

(15) 4. GEODESIC COORDINATES

Definition. The Christoffel symbols Γ_{ij}^k associated with the affine connection $\nabla : \mathbb{T}\mathbb{R}^n \times \mathbb{T}\mathbb{R}^n \to \mathbb{T}\mathbb{R}^n$ are defined by $\nabla_{\partial_i}\partial_i = \Gamma_{ij}^k\partial_k$ (i, j, k = 1, ..., n).

Recall that the components of the Christoffel symbols in a coordinate system $\overline{\mathbf{x}}$, say $\overline{\Gamma}_{ij}^k$, are given relative to those in a coordinate system \mathbf{x} , i.e. Γ_{ij}^k , by

$$\overline{\Gamma}_{ij}^k = S_\ell^k \left(T_j^m T_i^n \Gamma_{nm}^\ell + \overline{\partial}_j T_i^\ell \right) \,,$$

in which \mathbf{T} and \mathbf{S} are the Jacobian matrices with components

$$T_j^i = rac{\partial x^i}{\partial \overline{x}^j}$$
 resp. $S_j^i = rac{\partial \overline{x}^i}{\partial x^j}$

• Let $\Gamma_{ij}^k(\mathscr{P})$ be given at a *fixed* point \mathscr{P} , with coordinates $x^i(\mathscr{P}) = a^i$, say. Show that there exists a coordinate system $\overline{\mathbf{x}}$ such that $\overline{x}^i(\mathscr{P}) = 0$ and $\overline{\Gamma}_{ij}^k(\mathscr{P}) = 0$. (*Hint:* Postulate a transformation of the type $x^i = \alpha^i + \overline{x}^i + \frac{1}{2}\alpha_{ik}^i \overline{x}^j \overline{x}^k$.)

(15) 5. Cross Product in \mathbb{R}^3

Given a basis $\{\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3\}$ of $V = \mathbb{R}^3$ and a corresponding decomposition $\mathbf{v} = v^i \partial_i$, $\mathbf{w} = w^i \partial_i$, an inner product on V is specified by $(\mathbf{v}|\mathbf{w}) = G(\mathbf{v}, \mathbf{w}) = g_{ij}v^i w^j$, in which $g_{ij} = (\mathbf{e}_i|\mathbf{e}_j)$ are the components of the corresponding Gram matrix **G**. The dual basis of V^* is indicated by $\{\hat{\mathbf{e}}^1, \hat{\mathbf{e}}^2, \hat{\mathbf{e}}^3\}$.

Definition. Let $\hat{\mathbf{a}}^1, \ldots, \hat{\mathbf{a}}^k \in V^*$. The Hodge star operator $*: \bigwedge_k(V) \to \bigwedge_{n \to k}(V)$ is defined as follows:

$$\begin{cases} *1 = \boldsymbol{\epsilon} & \text{for } k = 0, \\ * \left(\hat{\mathbf{a}}^1 \wedge \ldots \wedge \hat{\mathbf{a}}^k \right) = \boldsymbol{\epsilon} \lrcorner \flat \hat{\mathbf{a}}^1 \lrcorner \ldots \lrcorner \flat \hat{\mathbf{a}}^k & \text{for } k = 1, \ldots, n. \end{cases}$$

In this definition $\epsilon = \sqrt{g} \, \hat{\mathbf{e}}^1 \wedge \hat{\mathbf{e}}^2 \wedge \hat{\mathbf{e}}^3 = \epsilon_{|i_1 i_2 i_3|} \hat{\mathbf{e}}^{i_1} \wedge \hat{\mathbf{e}}^{i_2} \wedge \hat{\mathbf{e}}^{i_3} \in \bigwedge_3(V)$ is the Levi-Civita tensor, with $\epsilon_{123} = \sqrt{g} = \sqrt{\det \mathbf{G}}$.

Definition. Let $\mathbf{a}_1, \ldots, \mathbf{a}_k \in V$. The (n-k)-form $\epsilon \lrcorner \mathbf{a}_1 \lrcorner \ldots \lrcorner \mathbf{a}_k \in \bigwedge_{n-k}(V)$ is defined as follows:

$$(\epsilon \lrcorner \mathbf{a}_1 \lrcorner \ldots \lrcorner \mathbf{a}_k) (\mathbf{x}_{k+1}, \ldots, \mathbf{x}_n) = \epsilon (\mathbf{a}_1, \ldots, \mathbf{a}_k, \mathbf{x}_{k+1}, \ldots, \mathbf{x}_n) \text{ for all } \mathbf{x}_{k+1}, \ldots, \mathbf{x}_n \in V.$$

Definition The cross product $\times : V \times V \to V : (\mathbf{v}, \mathbf{w}) \mapsto \mathbf{v} \times \mathbf{w}$ is defined in terms of the Levi-Civita tensor and Hodge star operator as follows:

$$\mathbf{v} imes \mathbf{w} = \flat \left(* \left(\sharp \mathbf{v} \wedge \sharp \mathbf{w}
ight)
ight)$$
.

Recall problem 3 for the definition of \sharp and \flat .

• Show that the components of $\mathbf{u} = \mathbf{v} \times \mathbf{w}$ are given by $u^{\ell} = \epsilon_{ijk} v^i w^j g^{k\ell}$. Give the explicit formula for (u^1, u^2, u^3) in case of an orthonormal basis.

THE END

APPENDIX

Name:

Student number:

dım
_
3

	$\mathcal{R}(\backslash P(V))$	dim
	$\mathcal{S}(\mathbf{V}_{\mathbf{V}}(\mathbf{V}))$	um
0		
1	$\{\mathbf{e}_1,\mathbf{e}_2,\mathbf{e}_3\}$	3
2		
3		