
RE-EXAMINATION TENSOR CALCULUS AND DIFFERENTIAL GEOMETRY

Course code: 2F800. Date: June 15, 2009. Time: 14h00–17h00. Place: HG 10.30 E.

• Write your name and student identification number on each paper.

• The exam consists of 5 problems. The maximum credit for each item is indicated in the margin.

• Motivate your answers.

• You may consult the course notes “Tensorrekening en Differentiaalmeetkunde (2F800)” by Jan de Graaf,
and the draft notes “Tensor Calculus and Differential Geometry (2F800)” by Luc Florack without warranty.

1. ANTISYMMETRIC COTENSORS IN R3(25)

Let B(V ) = {e1, e2, e3} be a basis of Euclidean 3-space V = R3. Let B(
∧p(V )) denote the in-

duced basis for
∧p(V ), i.e. the linear space of antisymmetric contravariant tensors of rank p on V , and

B(
∨p(V )) the induced basis for

∨p(V ), i.e. the linear space of symmetric contravariant tensors of rank
p on V .

a. Complete the table for B(
∧p(V )) in the appendix by providing the induced bases and their dimensions.(121

2 )

b. Complete the table for B(
∨p(V )) in the appendix by providing the induced bases and their dimensions.(121

2 )

♣

2. THE “INFINITESIMAL VOLUME ELEMENT”.(20)

We consider an open subset Ω ⊂ M of a Riemannian manifold M with a single smooth coordinate chart

ξ : Ω→ Rk : p 7→ ξ(p) = (ξ1(p), . . . , ξk(p))∈Rk .

Furthermore we take Ω to be correspond to the open box ξ(Ω) = (a1, b1)× . . .× (ak, bk) ⊂ Rk.

Recall the classical change of variables theorem from integral calculus.

Theorem. If ξ = ξ(ξ) represents a coordinate transformation, then, using self-explanatory notation for
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Also recall the following “tensor transformation law”.

Lemma. Let T ∈ Tp
q(V ) be a mixed tensor, {ei} a basis of the n-dimensional real linear space V ,

fj = Aijei a change of basis, with transformation matrix A, and B = A−1, i.e. AikB
k
j = δij . Then

T = T
i1...ip
j1...jq

ei1 ⊗ . . .⊗ eip ⊗ êj1 ⊗ . . .⊗ êjq
def
= T

i1...ip
j1...jq fi1 ⊗ . . .⊗ fip ⊗ f̂ j1 ⊗ . . .⊗ f̂ jq ,

if and only if the holor adheres to the tensor transformation law,

T
i1...ip
j1...jq = A`1j1 . . . A

`q
jq
Bi1
k1
. . . B

ip
kp
T
k1...kp
`1...`q

.

A scalar is defined as a tensor of type (p, q) = (0, 0).

a. Argue that the “infinitesimal volume element” dξ1 . . . dξk does not formally transform as a scalar,(5)
and derive the correct “relative scalar transformation law” to which it adheres.

If v(p) = vi(ξ(p))∂i|p ∈ TMp, w(p) = wi(ξ(p))∂i|p ∈ TMp, in which TMp is the tangent space to M
at p ∈ Ω, then we indicate the inner product on TMp byG(p)(ξ, η) = (ξ|η)p = gij(ξ(p))v

i(ξ(p))wj(ξ(p)),
in which gij(ξ(p)) is the (holor of the) metric tensor at p ∈ Ω.

For notational simplicity we suppress the explicit base point label p and its reference coordinates ξ(p)
in the above notation, and simply write v = vi∂i, w = wi∂i, G(ξ, η) = (ξ|η) = gijv

iwj , et cetera.
The determinant of the matrix gij is abbreviated as g.

b. Show that the “invariant infinitesimal volume element”, dV def
=
√
g dξ1 . . . dξk, transforms as a(5)

“pseudo scalar”, i.e. in a way identical to a scalar up to a possible minus sign: When does the minus
sign arise?

c. Show that the Levi-Civita tensor, ε =
√
g dξ1 ∧ . . .∧ dξk = ε|µ1...µk|dξ

µ1 ∧ . . .∧ dξµk ∈
∧
k(TMp),(5)

with ε1...k =
√
g, formally transforms in the same way as dV .

The Levi-Civita (or metric) connection provides a covariant derivative operator∇, with formal compo-
nents Dj relative to a coordinate basis {dxj}. Recall that for the contravariant components of a vector
field we have Djv

k = ∂jv
k + Γkijv

i, with

Γkij =
1

2
gk` (∂ig`j + ∂jg`i − ∂`gij) .

d. Show that if v̂ = vidx
i ∈ T∗M and w = wi∂i ∈ TM are smooth covector, respectively vector fields(5)

“of rapid decay”, i.e. such that all derivatives of the component functions vi : Rk → R : q 7→ vi(q) and
wi : Rk → R : q 7→ wi(q) vanish in the limit ‖q‖ → ∞, then∫

Rk

vi(ξ) (Djw
i(ξ))

√
g(ξ) dξ1 . . . dξk = −

∫
Rk

(Djvi(ξ))w
i(ξ)
√
g(ξ) dξ1 . . . dξk .

♣



3. CARTESIAN TENSORS(25)

Let M be a smooth manifold furnished with an atlas of coordinate charts, and consider a coordinate
transformation yi = yi(x1, . . . , xn), i = 1, . . . , n. (For simplicity we write yi = yi(xj) henceforth.)
The Jacobian matrix is indicated by A, with components Aij = ∂yi/∂xj , and its inverse by B, with
Bi
j = ∂xi/∂yj . (The upper index acts as the row index.)

For p ∈ M, {∂xi} denotes the coordinate basis of the local tangent space TMp in x-coordinatization.
An arbitrary vector can be decomposed as v = vi∂xi relative to {∂xi}. The cotangent space T∗Mp is
spanned by {dxi}, and an arbitrary covector can be written as v̂ = vidx

i relative to {dxi}.

a. Show that if v = wi∂yi and v̂ = widy
i, then wi = Aijv

j , respectively wi = Bj
i vj .(5)

We impose a Riemannian structure on M by stipulating an inner product (on each tangent space). If
v,w ∈ TMp, then (v|w) = G(v,w) = gijv

iwj , in which gij = (∂xi |∂xj ) are the components of
the corresponding Gram matrix G relative to {∂xi}. (Notice the distinction between the coordinate
independent rank-2 cotensor G and its coordinate dependent matrix representation G.)

b. Show that if G = gijdx
i⊗dxj = hijdy

i⊗dyj , in which hij are the components of the Gram matrix(5)
H in y-coordinatization, then H = BTGB.

Definition. The converters ] : TMp→T∗Mp and [ : T∗Mp→TMp are defined as follows. If v ∈ TMp,
v̂ ∈ T∗Mp, then

]v
def
= G(v, · ) ∈ T∗Mp respectively [v̂

def
= G−1(v̂, · ) ∈ TMp .

The dual metric G−1 is the rank-2 contratensor uniquely defined in terms of G by the requirement that
the converters be eachother’s inverse:

] ◦ [ = idT∗Mp respectively [ ◦ ] = idTMp .

c. Show that G−1 = gij∂xi ⊗ ∂xj , in which gij are the components of the inverse Gram matrix G−1.(5)
(Hint: Work out ([ ◦ ])v = v for all v ∈ TMp in coordinate form.)

We now assume that M is a Euclidean space, and that, in x-coordinatization, G = I, the identity matrix
(i.e. xi are Cartesian coordinates, and {∂xi} is an orthonormal basis of TMp).

Definition. A coordinate transformation relating Cartesian coordinate systems is called a Cartesian
coordinate transformation.

d. Give the explicit form of an arbitrary Cartesian coordinate transformation yi = yi(xj).(5)

e. Argue why in this case no distinction needs to be made between a vector v ∈ TMp and its dual(5)
v̂ = ]v ∈ T∗Mp, or between upper and lower indices.

♣



4. GEODESIC COORDINATES(15)

Definition. The Christoffel symbols Γkij associated with the affine connection∇ : TRn× TRn → TRn

are defined by∇∂j∂i = Γkij∂k (i, j, k = 1, . . . , n).

Recall that the components of the Christoffel symbols in a coordinate system x, say Γ
k
ij , are given

relative to those in a coordinate system x, i.e. Γkij , by

Γ
k
ij = Sk`

(
Tmj T

n
i Γ`nm + ∂jT

`
i

)
,

in which T and S are the Jacobian matrices with components

T ij =
∂xi

∂xj
resp. Sij =

∂xi

∂xj
.

• Let Γkij(P) be given at a fixed point P , with coordinates xi(P) = ai, say. Show that there exists a

coordinate system x such that xi(P) = 0 and Γ
k
ij(P) = 0.

(Hint: Postulate a transformation of the type xi = αi + xi + 1
2α

i
jkx

jxk.)

♣

5. CROSS PRODUCT IN R3(15)

Given a basis {e1, e2, e3} of V = R3 and a corresponding decomposition v = vi∂i, w = wi∂i, an inner
product on V is specified by (v|w) = G(v,w) = gijv

iwj , in which gij = (ei|ej) are the components
of the corresponding Gram matrix G. The dual basis of V ∗ is indicated by {ê1, ê2, ê3}.

Definition. Let â1, . . . , âk ∈ V ∗. The Hodge star operator ∗ :
∧
k(V )→

∧
n−k(V ) is defined as follows:{

∗1 = ε for k = 0,

∗
(
â1 ∧ . . . ∧ âk

)
= εy[â1y . . .y[âk for k = 1, . . . , n.

In this definition ε =
√
g ê1 ∧ ê2 ∧ ê3 = ε|i1i2i3|ê

i1 ∧ êi2 ∧ êi3 ∈
∧

3(V ) is the Levi-Civita tensor, with
ε123 =

√
g =
√

detG.

Definition. Let a1, . . . ,ak ∈ V . The (n−k)-form εya1y . . .yak ∈
∧
n−k(V ) is defined as follows:

(εya1y . . .yak) (xk+1, . . . ,xn) = ε (a1, . . . ,ak,xk+1, . . . ,xn) for all xk+1, . . . ,xn ∈ V .

Definition The cross product × : V ×V → V : (v,w) 7→ v×w is defined in terms of the Levi-Civita
tensor and Hodge star operator as follows:

v ×w = [ (∗ (]v ∧ ]w)) .

Recall problem 3 for the definition of ] and [.

• Show that the components of u = v ×w are given by u` = εijkv
iwjgk`. Give the explicit formula

for (u1, u2, u3) in case of an orthonormal basis.

THE END



APPENDIX

Name: Student number:

p B(
∧p(V )) dim

0 {1} 1

1 {e1, e2, e3} 3

2 {e1 ∧ e2, e1 ∧ e3, e2 ∧ e3} 3

3 {e1 ∧ e2 ∧ e3} 1

p B(
∨p(V )) dim

0 {1} 1

1 {e1, e2, e3} 3

2 {e1∨e1, e1∨e2, e1∨e3, e2∨e2, e2∨e3, e3∨e3} 6

3 {e1∨e1∨e1, e1∨e1∨e2, e1∨e1∨e3, e1∨e2∨e2, e1∨e2∨e3, e1∨e3∨e3, e2∨e2∨e2, e2∨e2∨e3, e2∨e3∨e3, e3∨e3∨e3} 10


