RE-EXAMINATION TENSOR CALCULUS AND DIFFERENTIAL GEOMETRY

Course code: 2F800. Date: June 15, 2009. Time: 14h00-17h00. Place: HG 10.30 E.

- Write your name and student identification number on each paper.
- The exam consists of 5 problems. The maximum credit for each item is indicated in the margin.
- Motivate your answers.
- You may consult the course notes "Tensorrekening en Differentiaalmeetkunde (2F800)" by Jan de Graaf, and the draft notes "Tensor Calculus and Differential Geometry (2F800)" by Luc Florack without warranty.

(25)
 1. Antisymmetric Cotensors in \mathbb{R}^{3}

Let $\mathscr{B}(V)=\left\{\mathbf{e}_{1}, \mathbf{e}_{2}, \mathbf{e}_{3}\right\}$ be a basis of Euclidean 3-space $V=\mathbb{R}^{3}$. Let $\mathscr{B}\left(\bigwedge^{p}(V)\right)$ denote the induced basis for $\bigwedge^{p}(V)$, i.e. the linear space of antisymmetric contravariant tensors of rank p on V, and $\mathscr{B}\left(\bigvee^{p}(V)\right)$ the induced basis for $\bigvee^{p}(V)$, i.e. the linear space of symmetric contravariant tensors of rank p on V.
(12 $\frac{1}{2}$)
a. Complete the table for $\mathscr{B}\left(\bigwedge^{p}(V)\right)$ in the appendix by providing the induced bases and their dimensions.
$\left(12 \frac{1}{2}\right)$ b. Complete the table for $\mathscr{B}\left(\bigvee^{p}(V)\right)$ in the appendix by providing the induced bases and their dimensions.

2. The "Infinitesimal Volume Element".

We consider an open subset $\Omega \subset \mathrm{M}$ of a Riemannian manifold M with a single smooth coordinate chart

$$
\xi: \Omega \rightarrow \mathbb{R}^{k}: p \mapsto \xi(p)=\left(\xi^{1}(p), \ldots, \xi^{k}(p)\right) \in \mathbb{R}^{k} .
$$

Furthermore we take Ω to be correspond to the open box $\xi(\Omega)=\left(a^{1}, b^{1}\right) \times \ldots \times\left(a^{k}, b^{k}\right) \subset \mathbb{R}^{k}$.
Recall the classical change of variables theorem from integral calculus.
Theorem. If $\xi=\xi(\bar{\xi})$ represents a coordinate transformation, then, using self-explanatory notation for the boundary values,

$$
\int_{a^{1}}^{b^{1}} \ldots \int_{a^{k}}^{b^{k}} f\left(\xi^{1}, \ldots, \xi^{k}\right) d \xi^{1} \ldots d \xi^{k}=\int_{\bar{a}^{1}}^{\bar{b}^{1}} \ldots \int_{\bar{a}^{k}}^{\bar{b}^{k}} \bar{f}\left(\bar{\xi}^{1}, \ldots, \bar{\xi}^{k}\right) \operatorname{det} \frac{\partial \xi}{\partial \bar{\xi}} d \bar{\xi}^{1} \ldots d \bar{\xi}^{k}
$$

in which

$$
\bar{f}\left(\bar{\xi}^{1}, \ldots, \bar{\xi}^{k}\right)=f\left(\xi^{1}\left(\bar{\xi}^{1}, \ldots, \bar{\xi}^{k}\right), \ldots, \xi^{k}\left(\bar{\xi}^{1}, \ldots, \bar{\xi}^{k}\right)\right)
$$

and

$$
\operatorname{det} \frac{\partial \xi}{\partial \bar{\xi}} \stackrel{\operatorname{def}}{=} \operatorname{det}\left(\begin{array}{ccc}
\frac{\partial \xi^{1}}{\partial \bar{\xi}^{1}} & \cdots & \frac{\partial \xi^{1}}{\partial \bar{\xi}^{n}} \\
\underset{\xi^{n}}{ } & & \dddot{\xi^{n}} \\
\frac{\partial \bar{\xi}^{1}}{\partial \bar{\xi}^{1}} & \cdots & \frac{\partial \bar{\xi}^{n}}{\partial \bar{\xi}^{n}}
\end{array}\right) .
$$

Also recall the following "tensor transformation law".

Lemma. Let $T \in \mathbf{T}_{q}^{p}(V)$ be a mixed tensor, $\left\{\mathbf{e}_{i}\right\}$ a basis of the n-dimensional real linear space V, $\mathbf{f}_{j}=A_{j}^{i} \mathbf{e}_{i}$ a change of basis, with transformation matrix A, and $B=A^{-1}$, i.e. $A_{k}^{i} B_{j}^{k}=\delta_{j}^{i}$. Then

$$
T=T_{j_{1} \ldots j_{q}}^{i_{1} \ldots i_{p}} \mathbf{e}_{i_{1}} \otimes \ldots \otimes \mathbf{e}_{i_{p}} \otimes \hat{\mathbf{e}}^{j_{1}} \otimes \ldots \otimes \hat{\mathbf{e}}^{j_{q}} \stackrel{\text { def }}{=} \bar{T}_{j_{1} \ldots j_{q}}^{i_{1} \ldots i_{p}} \mathbf{f}_{i_{1}} \otimes \ldots \otimes \mathbf{f}_{i_{p}} \otimes \hat{\mathbf{f}}^{j_{1}} \otimes \ldots \otimes \hat{\mathbf{f}}^{j_{q}}
$$

if and only if the holor adheres to the tensor transformation law,

$$
\bar{T}_{j_{1} \ldots j_{q}}^{i_{1} i_{p}}=A_{j_{1}}^{\ell_{1}} \ldots A_{j_{q}}^{\ell_{q}} B_{k_{1}}^{i_{1}} \ldots B_{k_{p}}^{i_{p}} T_{\ell_{1} \ldots \ell_{q}}^{k_{1} \ldots k_{p}} .
$$

A scalar is defined as a tensor of type $(p, q)=(0,0)$.
a. Argue that the "infinitesimal volume element" $d \xi^{1} \ldots d \xi^{k}$ does not formally transform as a scalar, and derive the correct "relative scalar transformation law" to which it adheres.

If $\mathbf{v}(p)=\left.v^{i}(\xi(p)) \partial_{i}\right|_{p} \in \mathrm{TM}_{p}, \mathbf{w}(p)=\left.w^{i}(\xi(p)) \partial_{i}\right|_{p} \in \mathrm{TM}_{p}$, in which TM_{p} is the tangent space to \mathbf{M} at $p \in \Omega$, then we indicate the inner product on TM_{p} by $G(p)(\xi, \eta)=(\xi \mid \eta)_{p}=g_{i j}(\xi(p)) v^{i}(\xi(p)) w^{j}(\xi(p))$, in which $g_{i j}(\xi(p))$ is the (holor of the) metric tensor at $p \in \Omega$.

For notational simplicity we suppress the explicit base point label p and its reference coordinates $\xi(p)$ in the above notation, and simply write $\mathbf{v}=v^{i} \partial_{i}, \mathbf{w}=w^{i} \partial_{i}, G(\xi, \eta)=(\xi \mid \eta)=g_{i j} v^{i} w^{j}$, et cetera. The determinant of the matrix $g_{i j}$ is abbreviated as g.
b. Show that the "invariant infinitesimal volume element", $d V \stackrel{\text { def }}{=} \sqrt{g} d \xi^{1} \ldots d \xi^{k}$, transforms as a "pseudo scalar", i.e. in a way identical to a scalar up to a possible minus sign: When does the minus sign arise?
c. Show that the Levi-Civita tensor, $\boldsymbol{\epsilon}=\sqrt{g} d \xi^{1} \wedge \ldots \wedge d \xi^{k}=\epsilon_{\left|\mu_{1} \ldots \mu_{k}\right|} d \xi^{\mu_{1}} \wedge \ldots \wedge d \xi^{\mu_{k}} \in \bigwedge_{k}\left(\mathrm{TM}_{p}\right)$, with $\epsilon_{1 \ldots k}=\sqrt{g}$, formally transforms in the same way as $d V$.

The Levi-Civita (or metric) connection provides a covariant derivative operator ∇, with formal components D_{j} relative to a coordinate basis $\left\{d x^{j}\right\}$. Recall that for the contravariant components of a vector field we have $D_{j} v^{k}=\partial_{j} v^{k}+\Gamma_{i j}^{k} v^{i}$, with

$$
\begin{equation*}
\Gamma_{i j}^{k}=\frac{1}{2} g^{k \ell}\left(\partial_{i} g_{\ell j}+\partial_{j} g_{\ell i}-\partial_{\ell} g_{i j}\right) \tag{5}
\end{equation*}
$$

d. Show that if $\hat{\mathbf{v}}=v_{i} d x^{i} \in \mathrm{~T}^{*} \mathrm{M}$ and $\mathbf{w}=w^{i} \partial_{i} \in \mathrm{TM}$ are smooth covector, respectively vector fields "of rapid decay", i.e. such that all derivatives of the component functions $v_{i}: \mathbb{R}^{k} \rightarrow \mathbb{R}: q \mapsto v_{i}(q)$ and $w^{i}: \mathbb{R}^{k} \rightarrow \mathbb{R}: q \mapsto w^{i}(q)$ vanish in the limit $\|q\| \rightarrow \infty$, then

$$
\int_{\mathbb{R}^{k}} v_{i}(\xi)\left(D_{j} w^{i}(\xi)\right) \sqrt{g}(\xi) d \xi^{1} \ldots d \xi^{k}=-\int_{\mathbb{R}^{k}}\left(D_{j} v_{i}(\xi)\right) w^{i}(\xi) \sqrt{g}(\xi) d \xi^{1} \ldots d \xi^{k}
$$

3. Cartesian Tensors

Let M be a smooth manifold furnished with an atlas of coordinate charts, and consider a coordinate transformation $y^{i}=y^{i}\left(x^{1}, \ldots, x^{n}\right), i=1, \ldots, n$. (For simplicity we write $y^{i}=y^{i}\left(x^{j}\right)$ henceforth.) The Jacobian matrix is indicated by \mathbf{A}, with components $A_{j}^{i}=\partial y^{i} / \partial x^{j}$, and its inverse by \mathbf{B}, with $B_{j}^{i}=\partial x^{i} / \partial y^{j}$. (The upper index acts as the row index.)

For $\mathbf{p} \in \mathrm{M},\left\{\partial_{x^{i}}\right\}$ denotes the coordinate basis of the local tangent space $\mathrm{TM}_{\mathbf{p}}$ in x-coordinatization. An arbitrary vector can be decomposed as $\mathbf{v}=v^{i} \partial_{x^{i}}$ relative to $\left\{\partial_{x^{i}}\right\}$. The cotangent space $\mathrm{T}^{*} \mathrm{M}_{\mathbf{p}}$ is spanned by $\left\{d x^{i}\right\}$, and an arbitrary covector can be written as $\hat{\mathbf{v}}=v_{i} d x^{i}$ relative to $\left\{d x^{i}\right\}$.
a. Show that if $\mathbf{v}=w^{i} \partial_{y^{i}}$ and $\hat{\mathbf{v}}=w_{i} d y^{i}$, then $w^{i}=A_{j}^{i} v^{j}$, respectively $w_{i}=B_{i}^{j} v_{j}$.

We impose a Riemannian structure on M by stipulating an inner product (on each tangent space). If $\mathbf{v}, \mathbf{w} \in \mathbf{T M}_{\mathbf{p}}$, then $(\mathbf{v} \mid \mathbf{w})=G(\mathbf{v}, \mathbf{w})=g_{i j} v^{i} w^{j}$, in which $g_{i j}=\left(\partial_{x^{i}} \mid \partial_{x^{j}}\right)$ are the components of the corresponding Gram matrix \mathbf{G} relative to $\left\{\partial_{x^{i}}\right\}$. (Notice the distinction between the coordinate independent rank-2 cotensor G and its coordinate dependent matrix representation G.)
b. Show that if $G=g_{i j} d x^{i} \otimes d x^{j}=h_{i j} d y^{i} \otimes d y^{j}$, in which $h_{i j}$ are the components of the Gram matrix \mathbf{H} in y-coordinatization, then $\mathbf{H}=\mathbf{B}^{\mathrm{T}} \mathbf{G B}$.

Definition. The converters $\#: \mathrm{TM}_{\mathbf{p}} \rightarrow \mathrm{T}^{*} \mathrm{M}_{\mathrm{p}}$ and $b: \mathrm{T}^{*} \mathrm{M}_{\mathbf{p}} \rightarrow \mathrm{TM}_{\mathbf{p}}$ are defined as follows. If $\mathbf{v} \in \mathrm{TM}_{\mathbf{p}}$, $\hat{\mathbf{v}} \in \mathrm{T}^{*} \mathrm{M}_{\mathrm{p}}$, then

$$
\sharp \mathbf{v} \stackrel{\text { def }}{=} G(\mathbf{v}, \cdot) \in \mathbf{T}^{*} \mathbf{M}_{\mathbf{p}} \quad \text { respectively } \quad b \hat{\mathbf{v}} \stackrel{\text { def }}{=} G^{-1}(\hat{\mathbf{v}}, \cdot) \in \mathrm{TM}_{\mathbf{p}} .
$$

The dual metric G^{-1} is the rank-2 contratensor uniquely defined in terms of G by the requirement that the converters be eachother's inverse:

$$
\sharp \circ b=\mathrm{id}_{\mathrm{T}^{*} \mathrm{M}_{\mathrm{p}}} \text { respectively } b \circ \sharp=\mathrm{id}_{\mathrm{TM}_{\mathrm{p}}} \text {. }
$$

c. Show that $G^{-1}=g^{i j} \partial_{x^{i}} \otimes \partial_{x^{j}}$, in which $g^{i j}$ are the components of the inverse Gram matrix \mathbf{G}^{-1}. (Hint: Work out $(b \circ \sharp) \mathbf{v}=\mathbf{v}$ for all $\mathbf{v} \in \mathrm{TM}_{\mathbf{p}}$ in coordinate form.)

We now assume that M is a Euclidean space, and that, in x-coordinatization, $\mathbf{G}=\mathbf{I}$, the identity matrix (i.e. x^{i} are Cartesian coordinates, and $\left\{\partial_{x^{i}}\right\}$ is an orthonormal basis of TM_{p}).

Definition. A coordinate transformation relating Cartesian coordinate systems is called a Cartesian coordinate transformation.
d. Give the explicit form of an arbitrary Cartesian coordinate transformation $y^{i}=y^{i}\left(x^{j}\right)$.
e. Argue why in this case no distinction needs to be made between a vector $\mathbf{v} \in \mathrm{TM}_{\mathrm{p}}$ and its dual $\hat{\mathbf{v}}=\sharp \mathbf{v} \in \mathrm{T}^{*} \mathbf{M}_{\mathbf{p}}$, or between upper and lower indices.

4. Geodesic Coordinates

Definition. The Christoffel symbols $\Gamma_{i j}^{k}$ associated with the affine connection $\nabla: \mathbb{T R}^{n} \times \mathrm{TR}^{n} \rightarrow \mathrm{TR}^{n}$ are defined by $\nabla_{\partial_{j}} \partial_{i}=\Gamma_{i j}^{k} \partial_{k}(i, j, k=1, \ldots, n)$.

Recall that the components of the Christoffel symbols in a coordinate system $\overline{\mathbf{x}}$, say $\bar{\Gamma}_{i j}^{k}$, are given relative to those in a coordinate system x, i.e. $\Gamma_{i j}^{k}$, by

$$
\bar{\Gamma}_{i j}^{k}=S_{\ell}^{k}\left(T_{j}^{m} T_{i}^{n} \Gamma_{n m}^{\ell}+\bar{\partial}_{j} T_{i}^{\ell}\right),
$$

in which \mathbf{T} and \mathbf{S} are the Jacobian matrices with components

$$
T_{j}^{i}=\frac{\partial x^{i}}{\partial \bar{x}^{j}} \quad \text { resp. } \quad S_{j}^{i}=\frac{\partial \bar{x}^{i}}{\partial x^{j}} .
$$

- Let $\Gamma_{i j}^{k}(\mathscr{P})$ be given at a fixed point \mathscr{P}, with coordinates $x^{i}(\mathscr{P})=a^{i}$, say. Show that there exists a coordinate system $\overline{\mathrm{x}}$ such that $\bar{x}^{i}(\mathscr{P})=0$ and $\bar{\Gamma}_{i j}^{k}(\mathscr{P})=0$.
(Hint: Postulate a transformation of the type $x^{i}=\alpha^{i}+\bar{x}^{i}+\frac{1}{2} \alpha_{j k}^{i} \bar{x}^{j} \bar{x}^{k}$.)

(15)

5. Cross Product in \mathbb{R}^{3}

Given a basis $\left\{\mathbf{e}_{1}, \mathbf{e}_{2}, \mathbf{e}_{3}\right\}$ of $V=\mathbb{R}^{3}$ and a corresponding decomposition $\mathbf{v}=v^{i} \partial_{i}, \mathbf{w}=w^{i} \partial_{i}$, an inner product on V is specified by $(\mathbf{v} \mid \mathbf{w})=G(\mathbf{v}, \mathbf{w})=g_{i j} v^{i} w^{j}$, in which $g_{i j}=\left(\mathbf{e}_{i} \mid \mathbf{e}_{j}\right)$ are the components of the corresponding Gram matrix \mathbf{G}. The dual basis of V^{*} is indicated by $\left\{\hat{\mathbf{e}}^{1}, \hat{\mathbf{e}}^{2}, \hat{\mathbf{e}}^{3}\right\}$.

Definition. Let $\hat{\mathbf{a}}^{1}, \ldots, \hat{\mathbf{a}}^{k} \in V^{*}$. The Hodge star operator $*: \bigwedge_{k}(V) \rightarrow \bigwedge_{n-k}(V)$ is defined as follows:

$$
\left\{\begin{array}{lll}
* 1 & =\boldsymbol{\epsilon} & \\
*\left(\hat{\mathbf{a}}^{1} \wedge \ldots \wedge \hat{\mathbf{a}}^{k}\right) & \left.\left.=\boldsymbol{\epsilon}\lrcorner b \hat{\mathbf{a}}^{1}\right\lrcorner \ldots\right\lrcorner b \hat{\mathbf{a}}^{k} & \\
\text { for } k=1, \ldots, n .
\end{array}\right.
$$

In this definition $\epsilon=\sqrt{g} \hat{\mathbf{e}}^{1} \wedge \hat{\mathbf{e}}^{2} \wedge \hat{\mathbf{e}}^{3}=\epsilon_{\left|i_{1} i_{2} i_{3}\right|} \hat{\mathbf{e}}^{i_{1}} \wedge \hat{\mathbf{e}}^{i_{2}} \wedge \hat{\mathbf{e}}^{i_{3}} \in \bigwedge_{3}(V)$ is the Levi-Civita tensor, with $\epsilon_{123}=\sqrt{g}=\sqrt{\operatorname{det} \mathbf{G}}$.

Definition. Let $\mathbf{a}_{1}, \ldots, \mathbf{a}_{k} \in V$. The $(n-k)$-form $\left.\left.\left.\epsilon\right\lrcorner \mathbf{a}_{1}\right\lrcorner \ldots\right\lrcorner \mathbf{a}_{k} \in \bigwedge_{n-k}(V)$ is defined as follows:

$$
\left.\left.\left.(\boldsymbol{\epsilon}\lrcorner \mathbf{a}_{1}\right\lrcorner \ldots\right\lrcorner \mathbf{a}_{k}\right)\left(\mathbf{x}_{k+1}, \ldots, \mathbf{x}_{n}\right)=\boldsymbol{\epsilon}\left(\mathbf{a}_{1}, \ldots, \mathbf{a}_{k}, \mathbf{x}_{k+1}, \ldots, \mathbf{x}_{n}\right) \quad \text { for all } \mathbf{x}_{k+1}, \ldots, \mathbf{x}_{n} \in V .
$$

Definition The cross product $\times: V \times V \rightarrow V:(\mathbf{v}, \mathbf{w}) \mapsto \mathbf{v} \times \mathbf{w}$ is defined in terms of the Levi-Civita tensor and Hodge star operator as follows:

$$
\mathbf{v} \times \mathbf{w}=b(*(\sharp \mathbf{v} \wedge \sharp \mathbf{w})) .
$$

Recall problem 3 for the definition of \sharp and b.

- Show that the components of $\mathbf{u}=\mathbf{v} \times \mathbf{w}$ are given by $u^{\ell}=\epsilon_{i j k} v^{i} w^{j} g^{k \ell}$. Give the explicit formula for $\left(u^{1}, u^{2}, u^{3}\right)$ in case of an orthonormal basis.

APPENDIX

Name:
Student number:

		$\mathscr{B}\left(\bigwedge^{p}(V)\right)$
p		
		dim
0		
1		$\left.\mathbf{e}_{1}, \mathbf{e}_{2}, \mathbf{e}_{3}\right\}$
2		3
3		

p	$\mathscr{B}\left(\bigvee^{p}(V)\right)$	dim
0		
1	$\left\{\mathbf{e}_{1}, \mathbf{e}_{2}, \mathbf{e}_{3}\right\}$	3
2		
3		

